Skip to main content

Relationship Between Maternal and Fetal Cardiovascular Function

  • Chapter
  • First Online:
Doppler Ultrasound in Obstetrics and Gynecology

Abstract

Maternal and fetal cardiovascular functions have traditionally been considered not to be linked. Recent evidence suggests that maternal cardiovascular maladaptation affects uteroplacental and in turn fetal-placental circulations. This is particularly relevant in fetal growth restriction and preeclampsia where impaired maternal cardiovascular function can be seen to be related to Doppler changes in the fetus that are associated with hypoxia and acidaemia. Understanding these mechanisms might enable treatment strategies to be developed for these conditions that so far have evaded disease modifying therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Clapp JF, Capeless E. Cardiovascular function before, during, and after the first and subsequent pregnancies. Am J Cardiol. 1997;80(11):1469–73.

    Article  Google Scholar 

  2. Meah VL, Cockcroft JR, Backx K, Shave R, Stöhr EJ. Cardiac output and related haemodynamics during pregnancy: a series of meta-analyses. Heart. 2016;102(7):518–26.

    Article  CAS  Google Scholar 

  3. Mahendru AA, Everett TR, Wilkinson IB, Lees CC, McEniery CM. A longitudinal study of maternal cardiovascular function from preconception to the postpartum period. J Hypertens. 2014 Apr;32(4):849–56. https://doi.org/10.1097/HJH.0000000000000090.

    Article  CAS  Google Scholar 

  4. Easterling T, Benedetti T, Schmucker B, Millard S. Maternal hemodynamics in normal and preeclamptic pregnancies: a longitudinal study. Obstet Gynecol. 1990;76(6):1061-106932(4):849-856.

    Google Scholar 

  5. Robson SC, Hunter S, Boys RJ, Dunlop W. Serial study of factors influencing changes in cardiac output during human pregnancy. Am J Physiol. 1989;256(4):H1060–5.

    CAS  Google Scholar 

  6. Masini G, Foo LF, Cornette J, et al. Cardiac output changes from prior to pregnancy to post partum using two non-invasive techniques. Heart. 2019;105(9):715–20.

    Article  Google Scholar 

  7. Foo FL, McEniery CM, Lees C, Khalil A. International working group on maternal hemodynamics. Assessment of arterial function in pregnancy: recommendations of the international working group on maternal hemodynamics. Ultrasound Obstet Gynecol. 2017;50(3):324–31.

    Article  CAS  Google Scholar 

  8. Iacobaeus C, Andolf E, Thorsell M, et al. Longitudinal study of vascular structure and function during normal pregnancy. Ultrasound Obstet Gynecol. 2017;49(1):46–53.

    Article  CAS  Google Scholar 

  9. Khalil A, Jauniaux E, Cooper D, Harrington K. Pulse wave analysis in normal pregnancy: a prospective longitudinal study. PLoS One. 2009;4(7):–e6134.

    Google Scholar 

  10. Mahendru A, Everett T, Wilkinson I, Lees C, McEniery C. Maternal cardiovascular changes from pre-pregnancy to very early pregnancy. J Hypertens. 2012;30(11):2168–72.

    Article  CAS  Google Scholar 

  11. Poppas A, Shroff SG, Korcarz CE, Hibbard JU, Berger DS, Lindheimer MD, Lang RM. Serial assessment of the cardiovascular system in normal pregnancy. Role of arterial compliance and pulsatile arterial load. Circulation. 1997;95(10):2407–15.

    Article  CAS  Google Scholar 

  12. Masini G, Foo LF, Tay J, Wilkinson IB, Valensise H, Gyselaers W, Lees CC. Preeclampsia has two phenotypes which require different treatment strategies. Am J Obstet Gynecol. 2022;226(2S):S1006–18. https://doi.org/10.1016/j.ajog.2020.10.052. Epub 2021 Jun 10.

    Article  CAS  Google Scholar 

  13. Valensise H, Vasapollo B, Gagliardi G, Novelli GP. Early and late preeclampsia: two different maternal hemodynamic states in the latent phase of the disease. Hypertension. 2008;52(5):873–80.

    Article  CAS  Google Scholar 

  14. Tay J, Foo L, Masini G, et al. Early and late preeclampsia are characterized by high cardiac output, but in the presence of fetal growth restriction, cardiac output is low: insights from a prospective study. Am J Obstet Gynecol. 2018;218(517):e1–12.

    Google Scholar 

  15. Melchiorre K, Sutherland GR, Liberati M, Thilaganathan B. Maternal cardiovascular impairment in pregnancies complicated by severe fetal growth restriction. Hypertension. 2012;60(2):437–43.

    Article  CAS  Google Scholar 

  16. Vasapollo B, Valensise H, Novelli GP, et al. Abnormal maternal cardiac function and morphology in pregnancies complicated by intrauterine fetal growth restriction. Ultrasound Obstet Gynecol. 2002;20:452–7.

    Article  CAS  Google Scholar 

  17. Gyselaers W, Spaanderman M, International Working Group on Maternal Hemodynamics. Assessment of venous hemodynamics and volume homeostasis during pregnancy: recommendations of the International Working Group on Maternal Hemodynamics. Ultrasound Obstet Gynecol. 2018;52(2):174–85.

    Article  CAS  Google Scholar 

  18. Melchiorre K, Thilaganathan B. Maternal cardiac function in preeclampsia. Curr Opin Obstet Gynecol. 2011;23:440–7.

    Article  Google Scholar 

  19. Perry H, Gutierrez J, Binder J, Thilaganathan B, Khalil A. Maternal arterial stiffness in hypertensive pregnancies with and without a small-for-gestational-age neonate [published online ahead of print, 2019 Oct 15]. Ultrasound Obstet Gynecol. 2019; https://doi.org/10.1002/uog.21893.

  20. Franz MB, Burgmann M, Neubauer A, et al. Augmentation index and pulse wave velocity in normotensive and pre-eclamptic pregnancies. Acta Obstet Gynecol Scand. 2013;92(8):960–6.

    Article  Google Scholar 

  21. Smith GC, Pell JP, Walsh D. Pregnancy complications and maternal risk of ischaemic heart disease: a retrospective cohort study of 129,290 births. Lancet. 2001;357(9273):2002–6.

    Article  CAS  Google Scholar 

  22. Duvekot JJ, Cheriex EC, Pieters FA, Peeters LL. Severely impaired fetal growth is preceded by maternal hemodynamic maladaptation in very early pregnancy. Acta Obstet Gynecol Scand. 1995;74:693–7.

    Article  CAS  Google Scholar 

  23. Foo FL, Mahendru AA, Masini G, Fraser A, Cacciatore S, MacIntyre DA, McEniery CM, Wilkinson IB, Bennett PR, Lees CC. Association between Prepregnancy cardiovascular function and subsequent preeclampsia or fetal growth restriction. Hypertension. 2018;72(2):442–50.

    Article  CAS  Google Scholar 

  24. Campbell S, Diaz-Recasens J, Griffin DR, et al. New doppler technique for assessing uteroplacental blood flow. Lancet. 1983;1:675–7.

    Article  CAS  Google Scholar 

  25. Harrington K, Cooper D, Lees C, Hecher K, Campbell S. Doppler ultrasound of the uterine arteries: the importance of bilateral notching in the prediction of pre-eclampsia, placental abruption or delivery of a small-for-gestationalage baby. Ultrasound Obstet Gynecol. 1996;7:182–8.

    Article  CAS  Google Scholar 

  26. Kuzmina IY, Hubina-Vakulik GI, Burton GJ. Placental morphometry and Doppler flow velocimetry in cases of chronic human fetal hypoxia. Eur J Obstet Gynecol Reprod Biol. 2005;120:139–45.

    Article  Google Scholar 

  27. Gallo DM, Wright D, Casanova C, Campanero M, Nicolaides KH. Competing risks model in screening for preeclampsia by maternal factors and biomarkers at 19-24 weeks’ gestation. Am J Obstet Gynecol. 2016;214(619):e1–17.

    Google Scholar 

  28. Lees C, Parra M, Missfelder-Lobos H, Morgans A, Fletcher O, Nicolaides KH. Individualized risk assessment for adverse pregnancy outcome by uterine artery Doppler at 23 weeks. Obstet Gynecol. 2001;98:369–73.

    CAS  Google Scholar 

  29. Papageorghiou AT, Yu CK, Bindra R, Pandis G, Nicolaides KH. Multicenter screening for pre-eclampsia and fetal growth restriction by transvaginal uterine artery Doppler at 23 weeks of gestation. Ultrasound Obstet Gynecol. 2001;18:441–9.

    Article  CAS  Google Scholar 

  30. Stampalija T, Monasta L, Di Martino DD, et al. The association of first trimester uterine arteries Doppler velocimetry with different clinical phenotypes of hypertensive disorders of pregnancy: a longitudinal study. J Matern Fetal Neonatal Med. 2017:1–9.

    Google Scholar 

  31. Rolnik DL, Wright D, Poon LC, et al. Aspirin versus placebo in pregnancies at high risk for preterm preeclampsia. N Engl J Med. 2017;377(7):613–22.

    Article  CAS  Google Scholar 

  32. Khong TY, De Wolf F, Robertson WB, Brosens I. Inadequate maternal vascular response to placentation in pregnancies complicated by pre-eclampsia and by small-for gestational age infants. BJOG. 1986;93:1049–59.

    Article  CAS  Google Scholar 

  33. Kingdom JC, Audette MC, Hobson SR, Windrim RC, Morgen E. A placenta clinic approach to the diagnosis and management of fetal growth restriction. Am J Obstet Gynecol. 2018;218(suppl2):S803–17.

    Article  Google Scholar 

  34. Fisher SJ. Why is placentation abnormal in preeclampsia? Am J Obstet Gynecol. 2015;213(suppl4):S115–22.

    Article  Google Scholar 

  35. Labarrere CA, DiCarlo HL, Bammerlin E, et al. Failure of physiologic transformation of spiral arteries, endothelial and trophoblast cell activation, and acute arthrosis in the basal plate of the placenta. Am J Obstet Gynecol. 2017;216(287):e1–16.

    Google Scholar 

  36. Ridder A, Giorgione V, Khalil A, Thilaganathan B. Preeclampsia: the relationship between uterine artery blood flow and trophoblast function. Int J Mol Sci. 2019;20(13):3263.

    Article  Google Scholar 

  37. Tay J, Masini G, McEniery CM, Giussani DA, Shaw CJ, Wilkinson IB, Bennett PR, Lees CC. Uterine and fetal placental Doppler indices are associated with maternal cardiovascular function. Am J Obstet Gynecol. 2019;220(1):96.e1–8. https://doi.org/10.1016/j.ajog.2018.09.017. Epub 2018 Sep 19.

    Article  Google Scholar 

  38. Everett TR, Lees CC. Beyond the placental bed: placental and systemic determinants of the uterine artery Doppler waveform. Placenta. 2012;33(11):893–901.

    Article  CAS  Google Scholar 

  39. Skow RJ, Davenport MH, Mottola MF, Davies GA, Poitras VJ, Gray CE, Jaramillo Garcia A, Barrowman N, Meah VL, Slater LG, Adamo KB, Barakat R, Ruchat SM. Effects of prenatal exercise on fetal heart rate, umbilical and uterine blood flow: a systematic review and meta-analysis. Br J Sports Med. 2019;53(2):124–33.

    Article  Google Scholar 

  40. Salvesen KÅ, Hem E, Sundgot-Borgen J. Fetal wellbeing may be compromised during strenuous exercising among pregnant elite athletes. Br J Sports Med. 2012;46(4):279–83.

    Article  Google Scholar 

  41. Chaddha V, Simchen MJ, Hornberger LK, Allen VM, Fallah S, Coates AL, Roberts A, Wilkes DL, Schneiderman-Walker J, Jaeggi E, Kingdom JC. Fetal response to maternal exercise in pregnancies with uteroplacental insufficiency. Am J Obstet Gynecol. 2005;193(3 Pt 2):995–9.

    Article  Google Scholar 

  42. ACOG Committee Opinion No. 650: physical activity and exercise during pregnancy and the postpartum period. Obstet Gynecol 2015;126(6):e135–42.

    Google Scholar 

  43. Allison BJ, Brain KL, Niu Y, et al. Fetal in vivo continuous cardiovascular function during chronic hypoxia. J Physiol. 2016;594:1247–64.

    Article  CAS  Google Scholar 

  44. Bodelsson G, Marsal K, Stjernquist M. Reduced contractile effect of endothelin-1 and noradrenalin in human umbilical artery from pregnancies with abnormal umbilical artery flow velocity waveforms. Early Hum Dev. 1995;42:15–28.

    Article  CAS  Google Scholar 

  45. Campbell S, Vyas S, Nicolaides KH. Doppler investigation of the fetal circulation. J Perinat Med. 1991;19:21–6.

    Article  CAS  Google Scholar 

  46. Hecher K, Bilardo CM, Stigter RH, et al. Monitoring of fetuses with intrauterine growth restriction: a longitudinal study. Ultrasound Obstet Gynecol. 2001;18(6):564–70.

    Article  CAS  Google Scholar 

  47. Baschat AA, Cosmi E, Bilardo CM, et al. Predictors of neonatal outcome in early-onset placental dysfunction. Obstet Gynecol. 2007;109(2 Pt 1):253–61.

    Article  Google Scholar 

  48. Ferrazzi E, Bozzo M, Rigano S, et al. Temporal sequence of abnormal Doppler changes in the peripheral and central circulatory systems of the severely growth-restricted fetus. Ultrasound Obstet Gynecol. 2002;19:140–6.

    Article  CAS  Google Scholar 

  49. Frusca T, Todros T, Lees C, Bilardo CM, TRUFFLE investigators. Outcome in early-onset fetal growth restriction is best combining computerized fetal heart rate analysis with ductus venosus Doppler: insights from the trial of umbilical and fetal flow in Europe. Am J Obstet Gynecol. 2018;218(suppl 2):S783–9.

    Article  Google Scholar 

  50. Karsdorp VH, van Vugt JM, van Geijn HP, et al. Clinical significance of absent or reversed end diastolic velocity waveforms in umbilical artery. Lancet. 1994;344:1664–8.

    Article  CAS  Google Scholar 

  51. Masini G, Tay J, McEniery CM, Wilkinson IB, Valensise H, Tiralongo GM, Farsetti D, Gyselaers W, Vonck S, Lees CC. Maternal cardiovascular dysfunction is associated with hypoxic cerebral and umbilical Doppler changes. J Clin Med. 2020;9(9):2891. https://doi.org/10.3390/jcm9092891.

    Article  CAS  Google Scholar 

  52. Kramer MS, McDonald SW. Aerobic exercise for women during pregnancy. Cochrane Database Syst Rev. 2006;(3):CD000180. https://doi.org/10.1002/14651858.CD000180.pub2.

  53. Leet T, Flick L. Effect of exercise on birthweight. Clin Obstet Gynecol. 2003;46:423–31.

    Article  Google Scholar 

  54. Lokey EA, Tran ZV, Wells CL, Myers BC, Tran AC. Effects of physical exercise on pregnancy utcomes: a metaanalytic review. Med Sci Sports Exerc. 1991;23:1234–9.

    Article  CAS  Google Scholar 

  55. Mahendru AA, Foo FL, McEniery CM, Everett TR, Wilkinson IB, Lees CC. Change in maternal cardiac output from preconception to mid-pregnancy is associated with birth weight in healthy pregnancies. Ultrasound Obstet Gynecol. 2017;49:78–84.

    Article  CAS  Google Scholar 

  56. Tiralongo GM, Pisani I, Vasapollo B, Khalil A, Thilaganathan B, Valensise H. Effect of a nitric oxide donor on maternal hemodynamics in fetal growth restriction. Ultrasound Obstet Gynecol. 2018;51(4):514–8. https://doi.org/10.1002/uog.17454.

    Article  CAS  Google Scholar 

  57. Valensise H, Vasapollo B, Novelli GP, et al. Maternal and fetal hemodynamic effects induced by nitric oxide donors and plasma volume expansion in pregnancies with gestational hypertension complicated by intrauterine growth restriction with absent end-diastolic flow in the umbilical artery. Ultrasound Obstet Gynecol. 2008;31:55–64.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph C. Lees .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lees, C.C., Masini, G. (2023). Relationship Between Maternal and Fetal Cardiovascular Function. In: Maulik, D., Lees, C.C. (eds) Doppler Ultrasound in Obstetrics and Gynecology. Springer, Cham. https://doi.org/10.1007/978-3-031-06189-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06189-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06188-2

  • Online ISBN: 978-3-031-06189-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics