Skip to main content

Chemiosmosis and the Origin of Eukaryotes

  • Chapter
  • First Online:
Energy and Evolutionary Conflict
  • 160 Accesses

Abstract

Because their energy-converting membranes are on the outside of the cell, surface-to-volume constraints limit the size and complexity of prokaryotic cells. Eukaryotes transcend these constraints by having energy-converting symbionts within a larger cell. This clever engineering solution to surface-to-volume constraints, however, results in a levels-of-selection nightmare. For instance, defecting protomitochondria could use ATP for their own replication rather than export it to the cytoplasm. Mediating such conflicts was likely a crucial part of eukaryogenesis. Remarkably, the process of chemiosmosis favors conflict mediation. Chemiosmosis proceeds rapidly and conserves a large proportion of the energetic input, quickly generating products. These products can be stored in various ways, but storage mechanisms are slow relative to chemiosmosis and in any event storage capacity is usually limited. When conditions are opportune, chemiosmotic cells and organisms face the possibility of “end-product inhibition.” In the presence of molecular oxygen, this enhances the formation of reactive oxygen species. Such partially reduced forms of oxygen can have a variety of detrimental effects. To avoid blocking electron flow, the abundant products of chemiosmotic energy conversion must be consumed, stored, or simply gotten rid of. While mechanisms that modulate chemiosmosis are available, an alternative solution is simply to disperse excess product into the environment. This “no-cost” sharing—the free lunch you are forced to make—facilitates interspecific groups, and such groups can lead to cooperative symbioses. Chemiosmosis may thus have been one of the key drivers of the origin of eukaryotes, e.g., if their own replication was constrained, protomitochondria were forced to export ATP.

Life arose around half a billion years after the earth’s formation, but then got stuck at the bacterial level of complexity for more than 2 billion years, half the age of our planet. Indeed, bacteria have remained simple in their morphology (but not their biochemistry) throughout 4 billion years. In stark contrast, all morphologically complex organisms—all plants, animals, fungi, seaweeds and single-celled ‘protists’ such as amoeba—descend from that singular ancestor about 1.5–2 billion years ago.

Nick Lane [1]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lane N (2015) The vital question: energy, evolution, and the origin of complex life. Norton, New York

    Google Scholar 

  2. Bonner JT (1998) The origins of multicellularity. Integr Biol 1:27–36

    Article  Google Scholar 

  3. Lachmann M, Blackstone NW, Haig D, Kowald A, Michod RE, Szathmáry E, Werren JH, Wolpert L (2003) Group 3: Cooperation and conflict in the evolution of genomes, cells, and multicellular organisms. In: Hammerstein P (ed) Genetic and cultural evolution of cooperation. MIT Press, Cambridge, MA, pp 327–356

    Google Scholar 

  4. Lane N (2005) Power, sex, suicide: mitochondria and the meaning of life. Oxford University Press, Oxford

    Google Scholar 

  5. Torday JS, Blackstone NW, Rehan VK (2019) Evidence-based evolutionary medicine. Wiley, Hoboken

    Google Scholar 

  6. Lane N, Martin W (2010) The energetics of genome complexity. Nature 467:929–934

    Article  CAS  PubMed  Google Scholar 

  7. Martin WF (2017) Physiology, anaerobes, and the origin of mitosing cells 50 years on. J Theor Biol 434:2–10

    Article  CAS  PubMed  Google Scholar 

  8. Michod RE (1999) Darwinian dynamics. Princeton University Press, Princeton

    Google Scholar 

  9. Raff RA, Mahler HR (1972) The non-symbiotic origin of mitochondria. Science 177:575–582

    Article  CAS  PubMed  Google Scholar 

  10. Uzzell T, Spolsky C (1974) Mitochondria and plastids as endosymbionts: a revival of special creation? Am Sci 62:334–343

    CAS  PubMed  Google Scholar 

  11. Bogorad L (1975) Evolution of organelles and eukaryotic genomes. Science 188:891–898

    Article  CAS  PubMed  Google Scholar 

  12. Williams G (ed) (1971) Group selection. Aldine Atherton, Chicago

    Google Scholar 

  13. Sánchez-Baracaldo P, Raven JA, Pisani D, Knoll AD (2017) Early photosynthetic eukaryotes inhabited low-salinity habitats. Proc Natl Acad Sci U S A 114:E7737–E7745

    PubMed  PubMed Central  Google Scholar 

  14. Skejo J, Garg SG, Gould SB, Hendriksen M, Tria FDK, Bremer N, Franjević D, Blackstone NW, Martin WF (2021) Evidence for a syncytial origin of eukaryotes from ancestral state reconstruction. Genome Biol Evol 13 (in press)

    Google Scholar 

  15. Embley TM, Martin W (2006) Eukaryotic evolution, changes and challenges. Nature 440:623–630

    Article  CAS  PubMed  Google Scholar 

  16. Martin WF, Garg S, Zimorski V (2015) Endosymbiotic theories for eukaryote origin. Philos Trans R Soc B 370:20140330

    Article  CAS  Google Scholar 

  17. Spang A, Saw JH, Jørgensen SL, Zaremba-Niedzwiedzka K, Martijn J, Lind AE, van Eijk R, Schleper C, Guy L, Ettema TJG (2015) Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521:173–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Speijer D (2017) Alternating terminal electron-acceptors at the basis of symbiogenesis: how oxygen ignited eukaryotic evolution. BioEssays 39:1600174

    Article  CAS  Google Scholar 

  19. Dance A (2021) The mysterious microbes at the root of complex life. Nature 593:328–330

    Article  CAS  PubMed  Google Scholar 

  20. Liu Y, Makarova KS, Huang W-C, Wolf YI, Nikolskaya AN, Zhang X, Cai M, Zhang C-J, Xu W, Luo Z, Cheng L, Koonin EV, Li M (2021) Expanded diversity of Asgard archaea and their relationships with eukaryotes. Nature 593:553–557

    Article  CAS  PubMed  Google Scholar 

  21. Blackstone NW (2016) An evolutionary framework for understanding the origin of eukaryotes. Biology 5:18

    Article  PubMed Central  Google Scholar 

  22. Bronstein JL (ed) (2015) Mutualism. Oxford University Press, Oxford

    Google Scholar 

  23. Nowak MA (2006) Five rules for the evolution of cooperation. Science 314:1560–1563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Michod RE (2003) Cooperation and conflict mediation during the origin of multicellularity. In: Hammerstein P (ed) Genetic and cultural evolution of cooperation. MIT Press, Cambridge, MA, pp 291–307

    Google Scholar 

  25. Cosmides LM, Tooby J (1981) Cytoplasmic inheritance and intragenomic conflict. J Theor Biol 89:83–129

    Article  CAS  PubMed  Google Scholar 

  26. Blackstone NW (1995) A units-of-evolution perspective on the endosymbiont theory of the origin of the mitochondrion. Evolution 49:785–796

    CAS  PubMed  Google Scholar 

  27. Frade JM, Michaelidis TM (1997) Origin of eukaryotic programmed cell death—a consequence of aerobic metabolism. BioEssays 19:827–832

    Article  CAS  PubMed  Google Scholar 

  28. Kroemer G (1997) Mitochondrial implication in apoptosis: towards an endosymbiont hypothesis of apoptosis evolution. Cell Death Differ 4:443–456

    Article  CAS  PubMed  Google Scholar 

  29. Mignotte B, Vayssiere J-L (1998) Mitochondria and apoptosis. Eur J Biochem 252:1–15

    Article  CAS  PubMed  Google Scholar 

  30. Blackstone NW, Green DR (1999) The evolution of a mechanism of cell suicide. BioEssays 21:84–88

    Article  CAS  PubMed  Google Scholar 

  31. Blackstone NW (2013) Why did eukaryotes evolve only once? Genetic and energetic aspects of conflict and conflict mediation. Philos Trans R Soc Lond B 368:20120266

    Article  CAS  Google Scholar 

  32. Blackstone NW (2013) Evolution and cell physiology. 2. The evolution of cell signaling from mitochondria to Metazoa. Am J Physiol Cell Physiol 305:C909–C915

    Article  CAS  PubMed  Google Scholar 

  33. Blackstone NW (2014) sAC as a model for understanding the impact of endosymbiosis on cell signaling. Biochim Biophys Acta 1842:2548–2554

    Article  CAS  PubMed  Google Scholar 

  34. Blackstone NW (2015) The impact of mitochondrial endosymbiosis on the evolution of calcium signaling. Cell Calcium 57:133–139

    Article  CAS  PubMed  Google Scholar 

  35. Radzvilavicius AL, Blackstone NW (2015) Conflict and cooperation in eukaryogenesis: implications for the timing of endosymbiosis and the evolution of sex. J R Soc Lond Interface 12:20150584

    Article  Google Scholar 

  36. Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191:144–148

    Article  CAS  PubMed  Google Scholar 

  37. Boyer PD, Chance B, Ernster L, Mitchell P, Racker E, Slater EC (1977) Oxidative phosphorylation and photophosphorylation. Annu Rev Biochem 46:955–1026

    Article  CAS  PubMed  Google Scholar 

  38. Allen JF (1993) Control of gene expression by redox potential and the requirement for chloroplast and mitochondrial genomes. J Theor Biol 165:609–631

    Article  CAS  PubMed  Google Scholar 

  39. Blackstone NW (2020) Chemiosmosis, evolutionary conflict, and eukaryotic symbiosis. In: Kloc M (ed) Symbiosis: cellular, molecular, medical, and evolutionary aspects. Springer, Cham, pp 237–252

    Chapter  Google Scholar 

  40. Chance B, Nishimura M (1960) On the mechanism of chlorophyll-cytochrome interaction: the temperature insensitivity of light-induced cytochrome oxidation in chromatium. Proc Natl Acad Sci U S A 46:19–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dudkina NV, Eubel H, Keegstra W, Boekema EJ, Braun H-P (2005) Structure of a mitochondrial supercomplex formed by respiratory-chain complexes I and III. Proc Natl Acad Sci U S A 102:3225–3229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Moser CC, Keske JM, Warncke K, Farid RS, Dutton PL (1992) Nature of biological electron transfer. Nature 355:796–802

    Article  CAS  PubMed  Google Scholar 

  43. Radzvilavicius AL, Blackstone NW (2018) The evolution of individuality, revisited. Biol Rev 93:1620–1633

    Article  PubMed  Google Scholar 

  44. Chance B, Williams GR (1956) The respiratory chain and oxidative phosphorylation. Adv Enzymol Relat Subj Biochem 17:65–134

    CAS  PubMed  Google Scholar 

  45. Goldschmidt EE, Huber SC (1992) Regulation of photosynthesis by end-product accumulation in leaves of plants storing starch, sucrose, and hexose sugars. Plant Physiol 99:1443–1448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Allen JF, Santabarbara S, Allen CA, Puthiyaveetil S (2011) Discrete redox signaling pathways regulate photosynthetic light-harvesting and chloroplast gene transcription. PLoS One 6:e26372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Malone LA, Qian P, Mayneord GE, Hitchcock A, Farmer DA, Thompson RF, Swainsbury DJK, Ranson NA, Hunter NA, Johnson MP (2019) Cryo-EM structure of the spinach cytochrome b6f complex at 3.6 Å resolution. Nature 575:535–539

    Article  CAS  PubMed  Google Scholar 

  48. Bertholet AM, Chouchani ET, Kazak L, Angelin A, Fedorenko A, Long JZ, Vidoni S, Garrity R, Cho J, Terada N, Wallace DC, Spiegelman BM, Kiricho Y (2019) H+ transport is an integral function of the mitochondrial ADP/ATP carrier. Nature 571:515–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Blackstone, N.W. (2022). Chemiosmosis and the Origin of Eukaryotes. In: Energy and Evolutionary Conflict. Springer, Cham. https://doi.org/10.1007/978-3-031-06059-5_7

Download citation

Publish with us

Policies and ethics