Skip to main content

Metabolic Vestiges of Conflict Mediation in Modern Biology

  • Chapter
  • First Online:
Energy and Evolutionary Conflict
  • 143 Accesses

Abstract

The complex interplay between metabolism and evolutionary conflict suggests that multicellular eukaryotes should be a veritable museum of mitochondrial and metabolic vestiges of conflict mediation. Many of these vestiges should lead back to the mechanisms of chemiosmosis. This may provide a framework to rationalize at least some seemingly baroque cellular and molecular natural histories. Several examples are discussed in this context: the curious case of STAT3, the role of mitochondria in calcium signaling, links between mitochondrial metabolism and angiogenesis, insulin and the power of substrate, and the role of mitochondria in innate immunity. In these and other cases, basic regulatory mechanisms may date to the origin of the eukaryotic cell. Metabolic regulation in particular evolved from mediating levels-of-selection conflicts. When eukaryotes become multicellular, these within-cell pathways may then have been co-opted into between-cell pathways. The success of eukaryotes in mediating within-cell conflicts may have preordained their success in mediating between-cell conflicts and thus achieving multicellularity. Certainly, eukaryotes have achieved notable success as multicellular organisms. The challenges that had to be overcome in forming a higher-level unit out of a community of energy-converting lower-level units may have given eukaryotes a remarkable toolkit to overcome such conflicts in subsequent evolutionary transitions. Perhaps this is the evolutionary version of the old adage—what doesn’t kill you makes you stronger, or at least more evolvable.

Eukaryotes are complex and the pivotal role of mitochondria in the origin of that complexity…seems increasingly difficult to dispute….

Bill Martin [1]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Martin WF (2011) Early evolution without a tree of life. Biol Direct 6:36

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gould SJ, Vrba ES (1982) Exaptation—a missing term in the science of form. Paleobiology 8:4–15

    Article  Google Scholar 

  3. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD (1997) The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275:1132–1136

    Article  CAS  PubMed  Google Scholar 

  4. Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng TI, Jones DP, Wang X (1997) Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275:1129–1132

    Article  CAS  PubMed  Google Scholar 

  5. Frade JM, Michaelidis TM (1997) Origin of eukaryotic programmed cell death—a consequence of aerobic metabolism. BioEssays 19:827–832

    Article  CAS  PubMed  Google Scholar 

  6. Kroemer G (1997) Mitochondrial implication in apoptosis: towards an endosymbiont hypothesis of apoptosis evolution. Cell Death Differ 4:443–456

    Article  CAS  PubMed  Google Scholar 

  7. Mignotte B, Vayssiere J-L (1998) Mitochondria and apoptosis. Eur J Biochem 252:1–15

    Article  CAS  PubMed  Google Scholar 

  8. Blackstone NW (2007) A food’s-eye view of the transition from basal metazoans to bilaterians. Integr Comp Biol 47:724–733

    Article  CAS  PubMed  Google Scholar 

  9. Bredesen DE, Rao RV, Mehlen P (2006) Cell death in the nervous system. Nature 443:796–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Blackstone NW, Green DR (1999) The evolution of a mechanism of cell suicide. BioEssays 21:84–88

    Article  CAS  PubMed  Google Scholar 

  11. Lane N (2005) Power, sex, suicide: mitochondria and the meaning of life. Oxford University Press, Oxford

    Google Scholar 

  12. Newman S (1994) Generic physical mechanisms of tissue morphogenesis: a common basis for development and evolution. J Evol Biol 7:467–488

    Article  Google Scholar 

  13. Blackstone NW, Kirkwood TBL (2003) Mitochondria and programmed cell death: “slave revolt” or community homeostasis? In: Hammerstein P (ed) Genetic and cultural evolution of cooperation. MIT Press, Cambridge, MA, pp 309–325

    Google Scholar 

  14. Michod RE (2003) Cooperation and conflict mediation during the origin of multicellularity. In: Hammerstein P (ed) Genetic and cultural evolution of cooperation. MIT Press, Cambridge, MA, pp 291–307

    Google Scholar 

  15. Sablina AA, Budanov AV, Ilyinskaya GV, Agapova LS, Kravchenko JE, Chumakov PM (2005) The antioxidant function of the p53 tumor suppressor. Nat Med 11:1306–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lu W-J, Chapo J, Roig I, Abrams JM (2010) Meiotic recombination provokes functional activation of the p53 regulatory network. Science 328:1278–1281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rose MR (1991) Evolutionary biology of aging. Oxford University Press, Oxford

    Google Scholar 

  18. Nedelcu AM (2009) Comparative genomics of phylogenetically diverse unicellular eukaryotes provide new insights into the genetic basis for the evolution of the programmed cell death machinery. J Mol Evol 68:256–268

    Article  CAS  PubMed  Google Scholar 

  19. Vousden KH (2010) Alternative fuel—another role for p53 in the regulation of metabolism. Proc Natl Acad Sci U S A 107:7117–7118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hu W, Zhang C, Sun Y, Levine A, Feng Z (2010) Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc Natl Acad Sci U S A 107:7455–7460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Suzuki S, Tanaka T, Poyurovsky MV, Nagano H, Mayama T, Ohkubo S, Lokshin M, Hosokawa H, Nakayama T, Suzuki Y, Sugano S, Sato E, Nagao T, Yokote K, Tatsuno I, Prives C (2010) Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proc Natl Acad Sci U S A 107:7461–7466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tolstonog GV, Deppert W (2010) Metabolic sensing by p53: keeping the balance between life and death. Proc Natl Acad Sci U S A 107:13193–13194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Khutornenko AA, Roudko VV, Chernyak BV, Vartapetian AB, Chumakov PM, Evstafieva AG (2010) Pyrimidine biosynthesis links mitochondrial respiration to the p53 pathway. Proc Natl Acad Sci U S A 107:12828–12833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bromberg J (2002) Stat proteins and oncogenesis. J Clin Invest 109:1139–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Levy DE, Darnell JE Jr (2002) Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol 3:651–662

    Article  CAS  PubMed  Google Scholar 

  26. Schindler CW (2002) JAK-STAT signaling in human disease. J Clin Invest 109:1133–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Levy DE, Lee C-K (2002) What does Stat3 do? J Clin Invest 109:1143–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Valsala H, Goshi N, Zhi-Xiang X, Fiona C, Hanausek M, Zbigniew W, Zoltaszek R, Gutterman JU (2009) Avicin D: a protein reactive plant isoprenoid dephosphorylates Stat 3 by both kinase and phosphatase activities. PLoS One 4:e5578

    Article  CAS  Google Scholar 

  29. Gough DJ, Corlett A, Schlessinger K, Wegrzyn J, Larner AC, Levy DE (2009) Mitochondrial STAT3 supports Ras-dependent oncogenic transformation. Science 324:1713–1716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Myers MG Jr (2009) Moonlighting in mitochondria. Science 323:723–724

    Article  CAS  PubMed  Google Scholar 

  31. Wegrzyn J, Potla R, Chwae Y-J, Sepuri NBV, Zhang Q, Koeck T, Derecka M, Szczepanek K, Szelag M, Gornicka A, Moh A, Moghaddas S, Chen Q, Bobbili S, Cichy J, Dulak J, Baker DP, Wolfman A, Stuehr D, Hassan MO, Fu X-Y, Avadhani N, Drake JI, Fawcett P, Lesnefsky EJ, Larner AC (2009) Function of mitochondrial Stat3 in cellular respiration. Science 323:793–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Blackstone NW (2009) Is evolutionary theory central to molecular cell biology? EvoS J J Evol Stud Consort 1:34–43

    Google Scholar 

  33. Embley TM, Martin W (2006) Eukaryotic evolution, changes and challenges. Nature 440:623–630

    Article  CAS  PubMed  Google Scholar 

  34. Michod RE, Nedelcu AM (2004) Cooperation and conflict during the unicellular-multicellular and prokaryotic-eukaryotic transitions. In: Moya A, Font E (eds) Evolution: from molecules to ecosystems. Oxford University Press, Oxford, pp 195–208

    Google Scholar 

  35. Martin WF, Garg S, Zimorski V (2015) Endosymbiotic theories for eukaryote origin. Philos Trans R Soc B 370:20140330

    Article  CAS  Google Scholar 

  36. Martin WF (2017) Physiology, anaerobes, and the origin of mitosing cells 50 years on. J Theor Biol 434:2–10

    Article  CAS  PubMed  Google Scholar 

  37. Blackstone NW (1995) A units-of-evolution perspective on the endosymbiont theory of the orgin of the mitochondrion. Evolution 49:785–796

    CAS  PubMed  Google Scholar 

  38. Georgellis D, Kwon O, Lin ECC (2001) Quinones as the redox signal for the arc two-component system of bacteria. Science 292:2314–2316

    Article  CAS  PubMed  Google Scholar 

  39. Allen JF (1993) Control of gene expression by redox potential and the requirement for chloroplast and mitochondrial genomes. J Theor Biol 165:609–631

    Article  CAS  PubMed  Google Scholar 

  40. Allen JF, Puthiyaveetil S, Ström J, Allen CA (2005) Energy transduction anchors genes in organelles. BioEssays 27:426–435

    Article  CAS  PubMed  Google Scholar 

  41. Pennisi E (2011) Green genomes. Science 332:1372–1375

    Article  CAS  PubMed  Google Scholar 

  42. Balic JJ, Albargy H, Luu K, Kirby FJ, Jayasekara WSN, Mansell F, Garama DJ, De Nardo D, Baschuk N, Louis C, Humphries F, Fitzgerald K, Latz E, Gough DJ, Mansell A (2020) STAT3 serine phosphorylation is required for TLR4 metabolic reprogramming and IL-1β expression. Nat Commun 11:3816. https://doi.org/10.1038/s41467-020-17669-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jacobson J, Duchen MR (2004) Interplay between mitochondria and cellular calcium signaling. Mol Cell Biochem 256(257):209–218

    Article  PubMed  Google Scholar 

  44. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signaling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529

    Article  CAS  PubMed  Google Scholar 

  45. Rizzuto R, Marchi S, Bonora M, Aguiari P, Bononi A, De Stefani D, Giorgi C, Leo S, Rimessi A, Siviero R, Zecchini E, Pinton P (2009) Ca2+ transfer from the ER to mitochondria: when, how, and why. Biochim Biophys Acta 1787:1342–1351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Carafoli E (2003) Historical review: mitochondria and calcium: ups and downs of an unusual relationship. Trends Biochem Sci 28:175–181

    Article  CAS  PubMed  Google Scholar 

  47. Chance B (1956) On possible mechanisms for the control of electron transport in the respiratory chain. In: Liebecqc C (ed) Proc 3rd intern Congr Biochem Brussels. Academic, pp 300–304

    Google Scholar 

  48. Rizzuto R, Brini M, Murgia M, Pozzan T (1993) Microdomains with high Ca2+ close to IP3-sensitive channels are sensed by neighboring mitochondria. Science 262:744–747

    Article  CAS  PubMed  Google Scholar 

  49. Blackstone NW (2015) The impact of mitochondrial endosymbiosis on the evolution of calcium signaling. Cell Calcium 57:133–139

    Article  CAS  PubMed  Google Scholar 

  50. Szabadkai G, Duchen MR (2008) Mitochondria: the hub of cellular Ca2+ signaling. Physiology 23:84–94

    Article  CAS  PubMed  Google Scholar 

  51. Hayashi T, Rizzuto R, Hajnoczky G, Su T-P (2009) MAM: more than just a housekeeper. Trends Cell Biol 19:81–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. De Stefani D, Raffaello A, Teardo E, Szabo I, Rizzuto R (2011) A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Science 476:336–340

    Google Scholar 

  53. Baughman JM, Perocchi F, Girgis HS, Plovanich M, Belcher-Timme CA, Sancak Y, Bao XR, Strittmatter L, Goldberger O, Bogorad RL, Koteliansky V (2011) Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476:341–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Folkman J (2002) Role of angiogenesis in tumor growth and metastasis. Semin Oncol 29:15–18

    Article  CAS  PubMed  Google Scholar 

  55. Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10:789–799

    Article  CAS  PubMed  Google Scholar 

  56. Tammela T, Enholm B, Alitalo K, Paavonen K (2005) The biology of vascular endothelial growth factors. Cardiovasc Res 65:550–563

    Article  CAS  PubMed  Google Scholar 

  57. Fischer C, Mazzone M, Jonckx B, Carmeliet P (2008) FLT1 and its ligands VEGFB and PlGF: drug targets for anti-angiogenic therapy? Nat Rev Cancer 8:942–956

    Article  CAS  PubMed  Google Scholar 

  58. Stefater JA III, Lewkowich I, Rao S, Mariggi G, Carpenter AC, Burr AC, Fan J, Ajima R, Molkentin JD, Williams BO, Wills-Karp M, Pollard JW, Yamaguchi T, Ferrara N, Gerhardt H, Lang RA (2011) Regulation of angiogenesis by a non-canonical Wnt-Flt1 pathway in myeloid cells. Science 474:511–515

    CAS  Google Scholar 

  59. Hagberg CE, Falkevall A, Wang X, Larsson E, Huusko J, Nilsson I, van Meeteren LA, Samen E, Lu L, Vanwildemeersch M, Klar J, Genove G, Pietras K, Stone-Elander S, Claesson-Welsh L, Yiä-Herttuala S, Lindahl P, Eriksson U (2010) Vascular endothelial growth factor B controls endothelial fatty acid uptake. Nature 464:917–921

    Article  CAS  PubMed  Google Scholar 

  60. Mehlem A, Palombo I, Wang X, Hagberg CE, Eriksson U, Falkevall A (2016) PGC-1α coordinates mitochondrial respiratory capacity and muscular fatty acid uptake via regulation of VEGF-B. Diabetes 65:861–873

    Article  CAS  PubMed  Google Scholar 

  61. Bonner JT (1998) The origins of multicellularity. Integr Biol 1:27–36

    Article  Google Scholar 

  62. Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–819

    Article  CAS  PubMed  Google Scholar 

  63. Simpson IA, Cushman SW (1986) Hormonal regulation of mammalian glucose transport. Annu Rev Biochem 55:1059–1089

    Article  CAS  PubMed  Google Scholar 

  64. Mukherjee C, Jungas RL (1975) Activation of pyruvate dehydrogenase in adipose tissue by insulin. Biochem J 148:229–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kashiwaya Y, Sato K, Tsuchiya N, Thomas S, Fell DA, Veech RL, Passonneau JV (1994) Control of glucose utilization in working perfused rat heart. J Biol Chem 269:25502–25514

    Article  CAS  PubMed  Google Scholar 

  66. Sato K, Kashiwaya Y, Keon CA, Tsuchiya N, King MT, Radda GK, Chance B, Clarke K, Veech RL (1995) Insulin, ketone bodies, and mitochondrial energy transduction. FASEB J 9:651–658

    Article  CAS  PubMed  Google Scholar 

  67. Kashiwaya Y, King MT, Veech RL (1997) Substrate signaling by insulin: a ketone bodies ratio mimics insulin action in the heart. Am J Cardiol 80:50A–64A

    Article  CAS  PubMed  Google Scholar 

  68. Hartman AL, Gasior M, Vining EPG, Rogawski MA (2007) The neuropharmacology of the ketogenic diet. Pediatr Neurol 36:281–292

    Article  PubMed  PubMed Central  Google Scholar 

  69. Freeman JM, Kossoff EH, Hartman AL (2007) The ketogenic diet: one decade later. Pediatrics 119:535–543

    Article  PubMed  Google Scholar 

  70. Bough KJ, Rho JM (2007) Anticonvulsant mechanisms of the ketogenic diet. Epilepsia 48:44–58

    Article  CAS  Google Scholar 

  71. Kashiwaya Y, Pawlosky R, Markis W, King MT, Bergman C, Srivastava S, Murray A, Clarke K, Veech RL (2010) A ketone ester diet increases brain malonyl-CoA and uncoupling proteins 4 and 5 while decreasing food intake in the normal Wistar rat. J Biol Chem 285:25950–25956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wolkow CA, Kimura KD, Lee M-S, Ruvkun G (2000) Regulation of C. elegans life-span by insulin-like signaling in the nervous system. Science 290:147–150

    Article  CAS  PubMed  Google Scholar 

  73. Underhill DM, Ozinsky A (2002) Phagocytosis of microbes: complexity in action. Annu Rev Immunol 20:825–852

    Article  CAS  PubMed  Google Scholar 

  74. Delledonne M, Xia Y, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394:585–587

    Article  CAS  PubMed  Google Scholar 

  75. Lam E, Kato N, Lawton M (2001) Programmed cell death, mitochondria and the plant hypersensitive response. Nature 411:848–853

    Article  CAS  PubMed  Google Scholar 

  76. Lambeth JD (2004) NOX enzymes and the biology of reactive oxygen species. Nat Rev Immunol 4:181–189

    Article  CAS  PubMed  Google Scholar 

  77. Sonoda J, Laganiere J, Mehl IR, Barish GD, Chong L-W, Li X, Scheffler IE, Mock DC, Bataille AR, Robert F, Lee C-H, Giguere V, Evans RM (2007) Nuclear receptor ERRα and coactivator PGC-1β are effectors of IFN-γ-induced host defense. Genes Dev 21:1909–1920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Harmata KL, Blackstone NW (2011) Reactive oxygen species and the regulation of hyperproliferation in a colonial hydroid. Physiol Biochem Zool 84:481–493

    Article  PubMed  Google Scholar 

  79. Zhou R, Yazdi AS, Menu P, Tschopp J (2010) A role for mitochondria in NLRP3 inflammasome activation. Nature 469:221–225

    Article  PubMed  CAS  Google Scholar 

  80. West AP, Brodsky IE, Rahner C, Woo DK, Erdjument-Bromage H, Tempst P, Walsh MC, Choi Y, Shadel GS, Ghosh S (2011) TLR signaling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472:476–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Vogel RO, Janssen RJRJ, van den Brand MAM, Dieteren CEJ, Verkaart S, Koopman WJH, Willems PHGM, Pluk W, van den Heuvel LPWJ, Smeitink JAM, Nijtmans LGJ (2007) Cytosolic signaling protein Ecsit also localizes to mitochondria where it interacts with chaperone NDUFAF1 and functions in complex I assembly. Genes Dev 21:615–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Schroder K, Tschopp J (2010) The inflammasomes. Cell 140:821–832

    Article  CAS  PubMed  Google Scholar 

  83. Tschopp J (2011) Mitochondria: sovereign of inflammation? Eur J Immunol 41:1196–1202

    Article  CAS  PubMed  Google Scholar 

  84. Lane N (2009) Life ascending: the ten great inventions of evolution. Oxford University Press, Oxford

    Google Scholar 

  85. Brueckner J, Martin WF (2020) Bacterial genes outnumber archaeal genes in eukaryotic genomes. Genome Biol Evol 12:282–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Blackstone, N.W. (2022). Metabolic Vestiges of Conflict Mediation in Modern Biology. In: Energy and Evolutionary Conflict. Springer, Cham. https://doi.org/10.1007/978-3-031-06059-5_11

Download citation

Publish with us

Policies and ethics