Skip to main content

Metabolism and Multicellularity Revisited

  • Chapter
  • First Online:
Energy and Evolutionary Conflict
  • 159 Accesses

Abstract

Theories relating multicellularity to metabolism date back at least to Charles Manning Child. Redox gradients and signaling no doubt play an integral role in multicellular organisms, adapting organismal features to the constraints of metabolism. Metabolism may also figure prominently in conflict mediation. Emerging data from various sources suggest the intriguing possibility that multicellularity involves a shift from continually proliferative Warburg-like unicellular organisms to multicellular ones with cell division downregulated in a nutrient-scarce, chemiosmotic somatic environment. Signaling pathways whose forerunners may have formed during the origin of eukaryotes may tie metabolism to proliferation. In this context, nutrient scarcity may function as a mechanism of conflict mediation, constraining the replication rate of lower-level units and thus the rate of copying errors leading to defecting cells. Much of this decrease may reflect simple consequences of bioenergetics—when nutrients are scarce, replication rates of individual cells are necessarily diminished, decreasing both the costs borne by cooperators and the benefits reaped by defectors. Taxa such as slime molds, yeasts, and corals illustrate the relationship between nutrient scarcity and cooperation. While studies of mammalian cancers have focused on “druggable targets,” recently a notable shift has occurred in the literature so that metabolic pathways are becoming more-and-more of a central consideration.

One possible intrinsic difficulty (maybe the biggest hurdle?) is the appropriate down-regulation of cell division at the appropriate time and space in the organism.

Eörs Szathmáry and Lewis Wolpert [1]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Szathmáry E, Wolpert L (2003) The transition from single cells to multicellularity. In: Hammerstein P (ed) Genetic and cultural evolution of cooperation. MIT Press, Cambridge, MA, pp 271–290

    Google Scholar 

  2. Blackstone NW (2006) Charles Manning Child (1869–1954): the past, present, and future of metabolic signaling. J Exp Zool (MDE) 306B:1–7

    Article  Google Scholar 

  3. Blackstone NW (2000) Redox control and the evolution of multicellularity. BioEssays 22:947–953

    Article  CAS  PubMed  Google Scholar 

  4. Michod RE (2003) Cooperation and conflict mediation during the origin of multicellularity. In: Hammerstein P (ed) Genetic and cultural evolution of cooperation. MIT Press, Cambridge, MA, pp 291–307

    Google Scholar 

  5. Bonner JT (1998) The origins of multicellularity. Integr Biol 1:27–36

    Article  Google Scholar 

  6. Kuzdzal-Fick JJ, Chen L, Balázsi G (2019) Disadvantages and benefits of evolved unicellularity versus multicellularity in budding yeast. Ecol Evol 9:8509–8523

    Article  PubMed  PubMed Central  Google Scholar 

  7. Blackstone NW, Gutterman JU (2021) Can natural selection and druggable targets synergize? Of nutrient scarcity, cancer, and the evolution of cooperation. BioEssays 43:2000160

    Article  Google Scholar 

  8. Bonner JT (2009) The social amoebae: the biology of cellular slime molds. Princeton University Press, Princeton, p 144

    Google Scholar 

  9. Bloomfield G, Pears C (2003) Superoxide signalling required for multicellular development of Dictyostelium. J Cell Sci 116:3387–3397

    Article  CAS  PubMed  Google Scholar 

  10. Allen RG, Farmer KJ, Toy PL, Newton RK, Sohal RS, Nations C (1985) Involvement of glutathione in the differentiation of the slime mold Physarum polycephalum. Dev Growth Differ 27:615–620

    Article  CAS  Google Scholar 

  11. Allen BG, Bhatia SK, Anderson CM, Eichenberger-Gilmore JM, Sibenaller ZA, Mapuskar KA, Schoenfeld JD, Buatti JM, Spitz DR, Fath MA (2014) Ketogenic diets as an adjuvant cancer therapy: history and potential mechanism. Redox Biol 2:963–970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Blackstone NW (2013) Why did eukaryotes evolve only once? Genetic and energetic aspects of conflict and conflict mediation. Philos Trans R Soc B 368:20120266

    Article  CAS  Google Scholar 

  13. Blackstone NW (2015) The impact of mitochondrial endosymbiosis on the evolution of calcium signaling. Cell Calcium 57:133–139

    Article  CAS  PubMed  Google Scholar 

  14. Kelly B, Carrizo GE, Edwards-Hicks J, Sanin DE, Stanczak MA, Priesnitz C, Flachsmann LJ, Curtis JD, Mittler G, Musa Y, Becker T, Buescher JM, Pearce EL (2021) Sulfur sequestration promotes multicellularity during nutrient limitation. Nature 591:471–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wooldridge SA (2010) Is the coral-algae symbiosis really ‘mutually beneficial’ for the partners? BioEssays 32:615–625

    Article  CAS  PubMed  Google Scholar 

  16. Davy SK, Allemand D, Weis VM (2012) Cell biology of cnidarian-dinoflagellate symbiosis. Microbiol Mol Biol Rev 76:229–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cunning R, Baker AC (2013) Excess algal symbionts increase the susceptibility of reef corals to bleaching. Nat Clim Change 3:259–262

    Article  Google Scholar 

  18. Vega Thurber RL, Burkepile DE, Fuchs C, Shantz AA, McMinds R, Zaneveld JR (2014) Chronic nutrient enrichment increases prevalence and severity of coral disease and bleaching. Glob Change Biol 20:544–554

    Article  Google Scholar 

  19. Netherton SE, Scheer DM, Morrison PR, Parrin AP, Blackstone NW (2014) Physiological correlates of symbiont migration during bleaching of two octocoral species. J Exp Biol 217:1469–1477

    PubMed  Google Scholar 

  20. Parrin AP, Somova EL, Kern PM, Millet TA, Bross LS, Blackstone NW (2017) The use of in vivo microscopy to image the cnidarian stress response. Invertebr Biol 136:330–344

    Article  Google Scholar 

  21. Almegbel MNA, Rowe EA, Alnaser FN, Yaeger M, Blackstone NW (2019) Metabolic activation and scaling in two species of colonial cnidarians. Biol Bull 237:63–72

    Article  PubMed  Google Scholar 

  22. Nagy LG, Ohm RA, Kovacs GM, Floudas D, Riley R, Gacser A, Sipiczki M, Davis JM, Doty SL, de Hoog GS, Lang BF, Spatafora JW, Martin FM, Grigoriev IV, Hibbett DS (2014) Latent homology and convergent regulatory evolution underlies the repeated emergence of yeasts. Nat Commun 5:1–8

    Article  CAS  Google Scholar 

  23. Nagy LG, Tóth R, Kiss E, Slot J, Gácser A, Kovács GM (2017) Six key traits of fungi: their evolutionary origins and genetic bases. Microbiol Spectr 5:1–22

    Article  CAS  Google Scholar 

  24. VanderHeiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033

    Article  CAS  Google Scholar 

  25. Pavlova NN, Thompson CB (2016) The emerging hallmarks of cancer metabolism. Cell Metab 23:27–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ly CH, Lynch GS, Ryall JG (2020) A metabolic roadmap for somatic stem cell fate. Cell Metab 31:1052–1067

    Article  CAS  PubMed  Google Scholar 

  27. Moser CC, Keske JM, Warncke K, Farid RS, Dutton PL (1992) Nature of biological electron transfer. Nature 355:796–802

    Article  CAS  PubMed  Google Scholar 

  28. Dudkina NV, Eubel H, Keegstra W, Boekema EJ, Braun H-P (2005) Structure of a mitochondrial supercomplex formed by respiratory-chain complexes I and III. Proc Natl Acad Sci U S A 102:3225–3229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chance B, Williams GR (1956) The respiratory chain and oxidative phosphorylation. Adv Enzymol Relat Subj Biochem 17:65–134

    CAS  PubMed  Google Scholar 

  30. Allen JF, Santabarbara S, Allen CA, Puthiyaveetil S (2011) Discrete redox signaling pathways regulate photosynthetic light-harvesting and chloroplast gene transcription. PLoS One 6:e26372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Martin WF, Garg SG, Zimorski V (2015) Endosymbiotic theories for eukaryotic origin. Philos Trans R Soc Lond B 370:20140330

    Article  CAS  Google Scholar 

  32. Lane N (2005) Power, sex, suicide: mitochondria and the meaning of life. Oxford University Press, Oxford

    Google Scholar 

  33. Fontana L, Partridge L (2015) Promoting health and longevity through diet: from model organisms to humans. Cell 161:106–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Aktipis CA, Boddy AM, Jansen G, Hibner U, Hochberg ME, Maley CC, Wilkinson GS (2015) Cancer across the tree of life: cooperation and cheating in multicellularity. Philos Trans R Soc Lond B 370:20140219

    Article  Google Scholar 

  35. Lachmann M, Blackstone NW, Haig D, Kowald A, Michod RE, Szathmáry E, Werren JH, Wolpert L (2003) Group 3: Cooperation and conflict in the evolution of genomes, cells, and multicellular organisms. In: Hammerstein P (ed) Genetic and cultural evolution of cooperation. MIT Press, Cambridge, MA, pp 327–356

    Google Scholar 

  36. Russo M, Crisafulli G, Sogari A, Reilly NM, Arena S, Lamba S, Bartolini A, Amodio V, Magrì A, Novara L, Sarotto I, Nagel ZD, Piett CG, Amatu A, Sartore-Bianchi A, Siena S, Bertotti A, Trusolino L, Corigliano M, Gherardi M, Lagomarsino MC, Nicolantonio F, Bardelli A (2019) Adaptive mutability of colorectal cancers in response to targeted therapies. Science 366:1473–1480

    Article  CAS  PubMed  Google Scholar 

  37. Cipponi A, Goode DL, Bedo J, McCabe MJ, Pajic M, Croucher DR, Rajal AG, Junankar SR, Saunders DN, Lobachevsky P, Papenfuss AT, Nessem D, Nobis M, Warren SC, Timpson P, Cowley M, Vargas AC, Qiu MR, Generali DG, Keerthikumar S, Nguyen U, Corcoran NM, Long GV, Blay J-Y, Thomas DM (2020) MTOR signaling orchestrates stress-induced mutagenesis, facilitating adaptive evolution in cancer. Science 368:1127–1131

    Article  CAS  PubMed  Google Scholar 

  38. Chen H, Lin F, Xing K, He X (2015) The reverse evolution from multicellularity to unicellularity during carcinogenesis. Nat Commun 6:1–9

    Google Scholar 

  39. Wellen KE, Thompson CB (2010) Cellular metabolic stress: considering how cells respond to nutrient excess. Mol Cell 40:323–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Coller HA (2014) Is cancer a metabolic disease? Am J Pathol 184:4–17

    Article  PubMed  PubMed Central  Google Scholar 

  41. Leone RD, Zhao L, Englert JM, Sun I-M, Oh M-H, Sun I-H, Arwood ML, Bettencourt IA, Patel CH, Wen J, Tam A, Blosser RL, Prchalova E, Alt J, Rais R, Slusher BS, Powell J, JD. (2019) Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science 366:1013–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kanarek N, Petrova B, Sabatini DM (2020) Dietary modifications for enhanced cancer therapy. Nature 579:507–517

    Article  CAS  PubMed  Google Scholar 

  43. Sinclair DA (2005) Toward a unified theory of caloric restriction and longevity regulation. Mech Ageing Dev 126:987–1002

    Article  CAS  PubMed  Google Scholar 

  44. Lutas A, Yellen G (2013) The ketogenic diet: metabolic influences on brain excitability and epilepsy. Trends Neurosci 36:32–40

    Article  CAS  PubMed  Google Scholar 

  45. Coll AP, Chen M, Taskar P, Rimmington D, Patel S, Tadross JA, , Cimino I, Yang M, Welsh P, Virtue S, Goldspink DA, Miedzybrodzka EL, Konopka AR, Esponda RR, Huang JT-J, Tung YCL, Rodriguez-Cuenca S, Tomaz RA, Harding HP, Melvin A, Yeo GSH, Preiss D, Vidal-Puig A, Vallier L, Nair KS, Wareham NJ, Ron D, Gribble FM, Reimann F, Sattar N, Savage DB, Allan BB, O’Rahilly S. 2020. GDF15 mediates the effects of metformin on body weight and energy balance. Nature, 578:444–448

    Article  CAS  PubMed  Google Scholar 

  46. Sahra IB, Marchand-Brustel YL, Tanti J-F, Bost F (2010) Metformin in cancer therapy: a new perspective for an old antidiabetic drug? Mol Cancer Ther 9:1092–1099

    Article  PubMed  CAS  Google Scholar 

  47. Morris JP, Yashinskie JJ, Koche R, Chandwani R, Tian S, Chen C-C, Baslan T, Marinkovic ZS, Sánchez-Rivera FJ, Leach SD, Carmona-Fontaine C, Thompson CB, Finley LWS, Lowe SW (2019) α-Ketoglutarate links p53 to cell fate during tumour suppression. Nature 573:595–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Borsa M, Simon AK (2020) Fine-tuning stemness. Science 369:373–374

    Article  CAS  PubMed  Google Scholar 

  49. Stone TW, McPherson M, Darlington LG (2018) Obesity and cancer: existing and new hypotheses for a causal connection. EBioMedicine 30:14–28

    Article  PubMed  PubMed Central  Google Scholar 

  50. Chung KM, Singh J, Lawres L, Dorans KJ, Garcia C, Burkhardt DB, Robbins R, Bhutkar A, Cardone R, Zhao X, Babic A, Vayrynen SA, Costa AD, Nowak JA, Chang DT, Dunne RF, Hezel AF, Koong AC, Wilhelm JJ, Bellin MD, Nylander V, Gloyn AL, McCarthy MI, Kibbey RG, Krishnaswamy S, Wolpin BM, Jacks T, Fuchs CS, Muzumdar MD (2020) Endocrine-exocrine signaling drives obesity associated pancreatic ductal adenocarcinoma. Cell 181:832–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sanaki Y, Nagata R, Kizawa D, Leopold P, Igaki T (2020) Hyperinsulinemia drives epithelial tumorigenesis by abrogating cell competition. Dev Cell 53:379–389

    Article  CAS  PubMed  Google Scholar 

  52. Lee J, Yesilkanal AE, Wynne JP, Frankenberger C, Liu J, Yan J, Elbaz M, Rabe DC, Rustandy FD, Tiwari P, Grossman EA, Hart PC, Kang C, Sanderson SM, Andrade J, Nomura DK, Bonini MG, Locasale JW, Rosner MR (2019) Effective breast cancer combination therapy targeting BACH1 and mitochondrial metabolism. Nature 568:254–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Aktipis CA, Maley CC, Pepper JW (2012) Dispersal evolution in neoplasms: the role of disregulated metabolism in the evolution of cell motility. Cancer Prev Res 5:266–275

    Article  Google Scholar 

  54. García-Jiménez C, Goding CR (2019) Starvation and pseudo-starvation as drivers of cancer metastasis through translation reprogramming. Cell Metab 29:254–267

    Article  PubMed  CAS  Google Scholar 

  55. Wang A, Luan H, Medzhitov R (2019) An evolutionary perspective on immunometabolism. Science 363:eaar3932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Massagué J, Obenauf AC (2016) Metastatic colonization by circulating tumour cells. Nature 529:298–306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Bissell MJ, Hines WC (2011) Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med 17:320–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ulgherait M, Midoun AM, Park SJ, Gatto JA, Tener SJ, Siewert J, Klickstein N, Canman JC, Ja WW, Shirasu-Hiza M (2021) Circadian autophagy drives iTRF-mediated longevity. Nature 598:353–358

    Article  CAS  PubMed  Google Scholar 

  59. Lien EC, Westermark AM, Zhang Y, Yuan C, Li Z, Lau AN, Sapp KM, Wolpin BM, Vander Heiden MG (2021) Low glycaemic diets alter lipid metabolism to influence tumour growth. Nature 599:302–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Blackstone NW, Bridge DM (2005) Model systems for environmental signaling. Integr Comp Biol 45:605–614

    Article  CAS  PubMed  Google Scholar 

  61. Blackstone NW, Kelly MM, Haridas V, Gutterman JU (2005) Mitochondria as integrators of information in an early-evolving animal: insights from a triterpenoid metabolite. Proc R Soc Lond B 272:527–531

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Blackstone, N.W. (2022). Metabolism and Multicellularity Revisited. In: Energy and Evolutionary Conflict. Springer, Cham. https://doi.org/10.1007/978-3-031-06059-5_10

Download citation

Publish with us

Policies and ethics