Skip to main content

Model of the Pneumatic Positional Unit with a Discrete Method for Control Dynamic Characteristics

  • Conference paper
  • First Online:
Advances in Design, Simulation and Manufacturing V (DSMIE 2022)

Abstract

At present, it appears that systems of pneumatic units with discrete and analog control, in which the required analog law of motion of the output member is provided with the help of discrete switchgear, offer a promising potential. When developing the schemes of positional hydraulic-pneumatic units, the parameters of the movement of the hydraulic-pneumatic unit are studied, namely: the value of displacement, speed, and acceleration of its output member. To carry out the simulation, a design based on discrete switchgear was taken as the basis for the pneumatic positional unit. Solving the inverse problem, i.e., with the law of motion of the output member of the pneumatic unit (specifying the positioning function) known, we determine the mandatory law of change in the effective areas of the control line and represent each equation of the dynamic model as block diagrams. A mathematical model of the system of pneumatic positional units with program control was developed. It considers the features of the system of pneumatic units and consists of mathematical models of the actuator, a real-time control line model, and a real-time control system. The proposed algorithm for analysis of dynamic characteristics using the MATLAB simulation environment confirms the adequacy of the mathematical models describing the operation of a positional pneumatic unit implemented on discrete pneumatic equipment. The developed algorithm is advisable to analyze the operation of the existing one and for designing new technological equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sokol, Y., Cherkashenko, M.: Synthesis of control schemes of drives system. NTU “KhPI” Publ., Kharkiv (2018)

    Google Scholar 

  2. Zhou, Y., Li, Y.: PLC control system of pneumatic manipulator automatic assembly line based on cloud computing platform. J. Phys. Conf. Ser. 1744, 022011 (2021)

    Google Scholar 

  3. Chelabi, M.A., Basova, Y., Hamidou, M.K., Dobrotvorskiy, S.: Analysis of the three-dimensional accelerating flow in a mixed turbine rotor. J. Eng. Sci. 8(2), D1–D7 (2021). https://doi.org/10.21272/jes.2021.8(2).d2

    Article  Google Scholar 

  4. Filatov, D., Minav, T., Heikkine, J.: Adaptive control for direct-driven hydraulic drive. In: 11th International Fluid Power Conference, vol. 1, pp. 110–119. RWTH Aachen University, Aachen (2018)

    Google Scholar 

  5. Heikkilä, M., Linjama, M.: Fault-tolerant control of a multi-outlet digital hydraulic pump-motor. In: 11th International Fluid Power Conference, vol. 1, pp. 144–157. RWTH Aachen University, Aachen (2018)

    Google Scholar 

  6. Kanagasabai, L.: Real power loss reduction by enhanced RBS algorithm. J. Eng. Sci. 8(2), E1–E9 (2021). https://doi.org/10.21272/jes.2021.8(2).e1

    Article  Google Scholar 

  7. Zhao, S., Li, D., Zhou, J., Sha, E.: Numerical and experimental study of a flexible trailing edge driving by pneumatic muscle actuators. J. Actuators 10(7), 142 (2021)

    Article  Google Scholar 

  8. Cantoni, C., Gobbi, M., Mastinu, G., Meschini, A.: Brake and pneumatic wheel performance assessment – a new test rig. Measurement 150(6), 107042 (2019)

    Google Scholar 

  9. Hufnagl, H., Čebular, A., Stemler, M.: Trends in pneumatics – digitalization. In: International Conference “Fluid Power 2021”: Conference Proceedings, pp. 15–28. University Press, Maribor (2021)

    Google Scholar 

  10. Zhang, Q., Kong, X., Yu, B., Ba, K., Jin, Z., Kang, Y.: Review and development trend of digital hydraulic technology. J. Appl. Sci. 10(2), 579 (2020)

    Article  Google Scholar 

  11. Rager, D., Neumann, R., Post, P., Murrenhoff, H.: Pneumatische antriebe für industrie 4.0 – pneumatic drives for industry 4.0. In: Mechatronik (2017)

    Google Scholar 

  12. Rager, D., Doll, M., Neumann, R., Berner, M.: New programmable valve terminal enables flexible and energy-efficient pneumatics for Industry 4.0. In: 11th International Fluid Power Conference, vol. 1, pp. 208–221. RWTH Aachen University, Aachen (2018)

    Google Scholar 

  13. Siivonen, L., Paloniitty, M., Linjama, M., Sairiala, H., Esque, S.: Digital valve system for ITER remote handling – design and prototype testing. J. Fusion Eng. Des. 146, 1637–1641 (2019)

    Article  Google Scholar 

  14. Pavlenko, I., et al.: Effect of superimposed vibrations on droplet oscillation modes in prilling process. Processes 8(5), 566 (2020). https://doi.org/10.3390/pr8050566

    Article  Google Scholar 

  15. Lu, S., Chen, D., Hao, R., Luo, S., Wang, M.: Design, fabrication and characterization of soft sensors through EGaIn for soft pneumatic actuators. Measurement 164(11), 107996 (2020)

    Article  Google Scholar 

  16. Belforte, G., Mauro, S., Mattiazzo, G.: A method for increasing the dynamic performance of pneumatic servosystems with digital valves. Mechatronics 14, 1105–1120 (2004)

    Article  Google Scholar 

  17. Pavlenko, I., Ivanov, V., Gusak, O., Liaposhchenko, O., Sklabinskyi, V.: Parameter identification of technological equipment for ensuring the reliability of the vibration separation process. In: Knapcikova, L., Balog, M., Perakovic, D., Perisa, M. (eds.) 4th EAI International Conference on Management of Manufacturing Systems. EICC, pp. 261–272. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-34272-2_24

    Chapter  Google Scholar 

  18. Gao, Q., Linjama, M., Paloniitty, M., Zhu, Y.: Investigation on positioning control strategy and switching optimization of an equal coded digital valve system. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 234(8), 959–972 (2019)

    Google Scholar 

  19. Ivanov, V., Pavlenko, I., Kuric, I., Kosov, M.: Mathematical modeling and numerical simulation of fixtures for fork-type parts manufacturing. In: Knapčíková, L., Balog, M. (eds.) Industry 4.0: Trends in Management of Intelligent Manufacturing Systems. EICC, pp. 133–142. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14011-3_12

    Chapter  Google Scholar 

  20. Šitum, Ž., Benić, J., Pejić, K., Bača, M., Radić, I., Semren, D.: Design and control of mechatronic systems with pneumatic and hydraulic drive. In: International Conference “Fluid Power 2021”: Conference Proceedings, pp. 179–194. University Press, Maribor (2021)

    Google Scholar 

  21. Šitum, Ž., Benić, J., Grbić, Š., Vlahović, F., Jelenić, D., Kosor, T.: Mechatronic systems with pneumatic drive. In: International Conference “Fluid Power 2017”: Conference Proceedings, pp. 281–293. University Press, Maribor (2017)

    Google Scholar 

  22. Colombo, F., Mazza, L., Pepe, G., Raparelli, T., Trivella, A.: Inverted pendulum on a cart pneumatically actuated by means of digital valves. In: Aspragathos, N.A., Koustoumpardis, P.N., Moulianitis, V.C. (eds.) RAAD 2018. MMS, vol. 67, pp. 436–444. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00232-9_46

    Chapter  Google Scholar 

  23. Elsaed, E., Abdelaziz, M., Mahmoud, N.: Investigation of a digital valve system efficiency for metering-in speed control using MATLAB/Simulink. In: International Conference on Hydraulics and Pneumatics HERVEX, 23rd edn., pp. 120–129 (2017)

    Google Scholar 

Download references

Acknowledgment

The scientific results have been obtained within the research project “Fulfillment of tasks of the perspective plan of development of a scientific direction “Technical sciences” Sumy State University” ordered by the Ministry of Education and Science of Ukraine (State Reg. No. 0121U112684). The research was partially supported by the Research and Educational Center for Industrial Engineering (Sumy State University) and International Association for Technological Development and Innovations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleksandr Gusak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cherkashenko, M., Gusak, O., Fatyeyev, A., Fatieieva, N., Gasiyk, A. (2022). Model of the Pneumatic Positional Unit with a Discrete Method for Control Dynamic Characteristics. In: Ivanov, V., Pavlenko, I., Liaposhchenko, O., Machado, J., Edl, M. (eds) Advances in Design, Simulation and Manufacturing V. DSMIE 2022. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-06044-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06044-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06043-4

  • Online ISBN: 978-3-031-06044-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics