Skip to main content

Theoretical and Experimental Studies of the Properties of Porous Permeable Materials Obtained from Industrial Waste

  • Conference paper
  • First Online:
Advances in Design, Simulation and Manufacturing V (DSMIE 2022)

Abstract

This article theoretically and experimentally investigates the scientific and technical problem of using multilayer porous permeable materials from industrial waste with controlled functional and technological characteristics by predicting the composition, structure, properties using computer information technology. These porous permeable materials (PPM) from industrial waste are suitable for the purification of technical liquids and gases, which has increased the efficiency of using products in various fields of mechanical engineering. The method of computer modeling proposed by the authors will allow not only to determine the porosity distribution of the filter material but also to determine the relationship between technological and structural parameters. The results of this scientific work are used to develop porous permeable products - filters - for the purification of technical, industrial water, lubricants, and fuels from mechanical impurities contaminants. Developed multilayer porous permeable materials have a higher coefficient of permeability, resource, and dirt capacity with similar single-layer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Budnik, A.F., Rudenko, P.V., Berladir, КV., Budnik, O.A.: Structured nanoobjects of polytetrafluoroethylene composites. J. Nano- Electron. Phys. 7(2), 02022 (2015)

    Google Scholar 

  2. Berladir, K., Gusak, O.: Influence of mechanically activated fillers of different chemical nature on tribotechnical properties of PTFE-composites. In: Tonkonogyi, V., et al. (eds.) InterPartner 2019. LNME, pp. 395–404. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40724-7_40

    Chapter  Google Scholar 

  3. Povstyanoy, O., Zabolotnyi, O., Rud, V., Kuzmov, A., Herasymchuk, H.: Modeling of processes for creation new porous permeable materials with adjustable properties. In: Ivanov, V., et al. (eds.) DSMIE 2019. LNME, pp. 456–465. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-22365-6_46

    Chapter  Google Scholar 

  4. Xi, Z.P., Tang, H.P.: Sintered Metal Porous Material. Metallurgical Industry Press, Beijing (2009)

    Google Scholar 

  5. Bruno, G., Efremov, A.M., Levandovskyi, A.N.: Connecting the macro- and microstrain responses in technical porous ceramics: Modeling and experimental validations. J. Mater. Sci. 46(1), 161–173 (2020)

    Article  Google Scholar 

  6. Bejan, A., Dincer, I., Lorente, S., Miguel, A.F., Reis, A.H.: Porous and Complex Flow Structures in Modern Technologies, vol. 1, pp. 90–99. Springer, Heidelberg (2014). https://doi.org/10.1007/978-1-4757-4221-3

  7. Chern, M., Vaziri, N.: Effect of porous media on hydraulic jump characteristics by using smooth particle hydrodynamics method. Int. J. Civ. Eng. 18, 367–379 (2020)

    Article  Google Scholar 

  8. Hunyadi Murph, S.E., Jacobs, S., Siegfried, M., Hu, T., Serkiz, S., Hudson, J.: Manganese-doped «gold nanoparticles as positive contrast agents for magnetic resonance imaging (MRI)». J. Nanopart. Res. 14, 658–659 (2012)

    Article  Google Scholar 

  9. Jonsson, P., Jonsen, P., Andreasson, P., Lundstrom, T.S., Hellstrom, J.G.: Smoothed particle hydrodynamic modelling of hydraulic jumps: bulk parameters and free surface fluctuations. Engineering 8, 386–402 (2016)

    Article  Google Scholar 

  10. Faisal, A.A.H., Sulaymon, A.H., Khaliefa, Q.M.: A review of permeable reactive barrier as passive sustainable technology for groundwater remediation. Int. J. Environ. Sci. Technol. 15(5), 1123–1138 (2017). https://doi.org/10.1007/s13762-017-1466-0

    Article  Google Scholar 

  11. Lagae, A., Dutré, P.: A Comparison of methods for generating Poisson disk distributions. Comput. Graph. 27(1), 114–129 (2018)

    Google Scholar 

  12. McMillan, A., Jones, R., Peng, D., Chechkin, G.A.: A computational study of the influence of surface roughness on material strength. Meccanica 53(9), 2411–2436 (2018). https://doi.org/10.1007/s11012-018-0830-6

    Article  MathSciNet  Google Scholar 

  13. Pylypaka, S., Nesvidomin, V., Volina, T., Sirykh, L., Ivashyna, L.: Movement of the particle on the internal surface of the spherical segment rotating about a vertical axis. INMATEH Agric. Eng. 62(3), 79–88 (2020). https://doi.org/10.35633/inmateh-62-08

    Article  Google Scholar 

  14. Pylypaka, S., Volina, T., Hryshchenko, I., Rybenko, I., Sydorenko, N.: Dynamics of a particle on a movable wavy surface. In: Tonkonogyi, V., et al. (eds.) InterPartner 2020. LNME, pp. 196–206. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68014-5_20

    Chapter  Google Scholar 

  15. Nurkanov, E.Y., Kadushnikov, R.M., Kamenin, I.G., Alievsky, D.M., Kartashov, V.V.: Study of the density characteristics of three-dimensional stochastic packages of spherical particles using a computer model. Powder Metall. 5(6) (2001)

    Google Scholar 

  16. Rusaґk, Z., Horvaґth, I., Mandorli, F.: Towards multi-domain knowledge transfer in engineering analyses and simulations based on virtual prototypes. Eng. Comput. 29(3), 247–250 (2013)

    Article  Google Scholar 

  17. Pavlenko, I., Liaposhchenko, A., Ochowiak, M., Demyanenko, M.: Solving the stationary hydroaeroelasticity problem for dynamic deflection elements of separation devices. Vibr. Phys. Syst. 29, 2018026 (2018)

    Google Scholar 

  18. Crnkovic, G.D.: Information and Computation nets. Investigations into info-computational world. In: Information and Computation, pp. 91–96. Verlag, Saarbrucken (2019)

    Google Scholar 

  19. Povstyanoy, O., Sychuk, V., Makmyllan, A., Rud, V., Zabolotnyy, O.: Metallographic analysis and processing of images of microstructure of nozzles for sandblasting which are made by powder metallurgy. Powder Metall. 3(4), 234–240 (2015)

    Article  Google Scholar 

  20. Pavlenko, I., Ivanov, V., Gusak, O., Liaposhchenko, O., Sklabinskyi, V.: Parameter identification of technological equipment for ensuring the reliability of the vibration separation process. In: Knapcikova, L., Balog, M., Perakovic, D., Perisa, M. (eds.) 4th EAI International Conference on Management of Manufacturing Systems. EICC, pp. 261–272. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-34272-2_24

    Chapter  Google Scholar 

  21. Chernysh, Y., Plyatsuk, L., Roubik, H., Yakhnenko, O., Skvortsova, P., Bataltsev, Y.: Application of technological solutions for bioremediation of soils contaminated with heavy metals. J. Eng. Sci. 8(2), H8–H16 (2021). https://doi.org/10.21272/jes.2021.8(2).h2

    Article  Google Scholar 

  22. Saadatfar, M., et al.: Imaging of metallic foams using X-ray micro-CT. Colloid Surf. Physicochem. Eng. Aspect 344(1), 107–112 (2009). https://doi.org/10.1016/j.colsurfa.2009.01.008

    Article  Google Scholar 

  23. Sidi Practical Extrapolation Methods: Theory and Applications. Cambridge Monographs on Applied and Computational Mathematics. Cambridge (2002)

    Google Scholar 

  24. Shyberko, V., Rud, V.: Modelling of structural and inhomogeneous materials based on the finite element method. Actual Prob. Econ. APE, 124–130 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleksandr Povstyanoy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Povstyanoy, O., Imbirovich, N., Tkachuk, V., Redko, R., Priadko, O. (2022). Theoretical and Experimental Studies of the Properties of Porous Permeable Materials Obtained from Industrial Waste. In: Ivanov, V., Trojanowska, J., Pavlenko, I., Rauch, E., Peraković, D. (eds) Advances in Design, Simulation and Manufacturing V. DSMIE 2022. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-06025-0_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06025-0_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06024-3

  • Online ISBN: 978-3-031-06025-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics