Skip to main content

MPCM-based Porous Cementitious Composites for Enhanced Energy Efficiency of Smart Buildings

  • Conference paper
  • First Online:
Environmental Concerns and Remediation

Abstract

This work reports a detailed experimental study that has the purpose of investigating the thermal energy storage (TES) performance of cement pastes enhanced with novel microencapsulated phase change materials (MPCMs). Three water-to-binder ratios and three MPCM volume fractions, leading to a total of nine different mixtures, were investigated at the Institut für Werkstoffe im Bauwesen– TU Darmstadt. Water-to-binder ratios of 0.33, 0.40, and 0.45 are considered, for the reference pastes, while a MPCM having a melting/solidification temperature range of 37 °C and a latent storage capacity of 190 kJ/kg has been mixed in the MPCM pastes. Thermal and mechanical tests, accompanied by SEM analyses, are performed to observe the effect MPCMs have on the resulting TES and strength results. The experimental data have been analyzed to evaluate the corresponding temperature-based material parameters like specific heat, conductivity, or more in general the energy storage capacity of these systems under transient heat transfer conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Heating and cooling | EASME., https://ec.europa.eu/easme/en/section/horizon-2020-energy-efficiency/heating-andcooling#inline-nav-1. Last accessed 28 Apr 2021

  2. D. Ürge-Vorsatz, L.F. Cabeza, S. Serrano, C. Barreneche, K. Petrichenko, Heating and cooling energy trends and drivers in buildings. Renew. Sust. Energ. Rev. 41, 85–98 (2015)

    Article  Google Scholar 

  3. R.A. Kishore, M.V. Bianchi, C. Booten, J. Vidal, R. Jackson, Optimizing PCM-integrated walls for potential energy savings in US Buildings. Energ. Buildings 226, 110355 (2020)

    Article  Google Scholar 

  4. A. Sharma, V.V. Tyagi, C.R. Chen, D. Buddhi, Review on thermal energy storage with phase change materials and applications. Renew. Sust. Energy Rev. 13(2), 318–345 (2009)

    Article  CAS  Google Scholar 

  5. V.D. Cao, S. Pilehvar, C. Salas-Bringas, A.M. Szczotok, T.Q. Bui, M. Carmona, A.L. Kjøniksen, Thermal performance and numerical simulation of geopolymer concrete containing different types of thermoregulating materials for passive building applications. Energ. Buildings 173, 678–688 (2018)

    Article  Google Scholar 

  6. V.D. Cao, S. Pilehvar, C. Salas-Bringas, A.M. Szczotok, L. Valentini, M. Carmona, A.L. Kjøniksen, Influence of microcapsule size and shell polarity on thermal and mechanical properties of thermoregulating geopolymer concrete for passive building applications. Energy Convers. Manag. 164, 198–209 (2018)

    Article  CAS  Google Scholar 

  7. C. Cárdenas-Ramírez, M. Gómez, F. Jaramillo, Characterization of a porous mineral as a promising support for shape-stabilized phase change materials. J. Energy Storage 26, 101041 (2019)

    Article  Google Scholar 

  8. M. He, L. Yang, W. Lin, J. Chen, X. Mao, Z. Ma, Preparation, thermal characterization, and examination of phase change materials (PCMs) enhanced by carbon-based nanoparticles for solar thermal energy storage. J. Energy Storage 25, 100874 (2019)

    Article  Google Scholar 

  9. F. Goia, M. Perino, V. Serra, Improving thermal comfort conditions by means of PCM glazing systems. Energ. Buildings 60, 442–452 (2013)

    Article  Google Scholar 

  10. M.N. Sam, A. Caggiano, C. Mankel, E. Koenders, A comparative study on the thermal energy storage performance of bio-based and paraffin-based PCMs using DSC procedures. Materials 13(7), 1705 (2020)

    Article  CAS  Google Scholar 

  11. U. Stritih, V.V. Tyagi, R. Stropnik, H. Paksoy, F. Haghighat, M.M. Joybari, Integration of passive PCM technologies for net-zero energy buildings. Sustain. Cities Soc. 41, 286–295 (2018)

    Article  Google Scholar 

  12. Y. Lin, Y. Jia, G. Alva, G. Fang, Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage. Renew. Sust. Energ. Rev. 82, 2730–2742 (2018)

    Article  CAS  Google Scholar 

  13. S. Drissi, T.C. Ling, K.H. Mo, A. Eddhahak, A review of microencapsulated and composite phase change materials: Alteration of strength and thermal properties of cement-based materials. Renew. Sust. Energ. Rev. 110, 467–484 (2019)

    Article  CAS  Google Scholar 

  14. P.K.S. Rathore, S.K. Shukla, Enhanced thermophysical properties of organic PCM through shape stabilization for thermal energy storage in buildings: A state of the art review. Energ. Buildings 236, 110799 (2021)

    Article  Google Scholar 

  15. S. Ramakrishnan, J. Sanjayan, X. Wang, M. Alam, J. Wilson, A novel paraffin/expanded perlite composite phase change material for prevention of PCM leakage in cementitious composites. Appl. Energy 157, 85–94 (2015)

    Article  CAS  Google Scholar 

  16. D.W. Hawes, D. Banu, D. Feldman, Latent heat storage in concrete. Solar Energy Mater. 19(3–5), 335–348 (1989)

    Article  CAS  Google Scholar 

  17. D.W. Hawes, D. Feldman, D. Banu, Latent heat storage in building materials. Energ. Buildings 20(1), 77–86 (1993)

    Article  Google Scholar 

  18. P.K.S. Rathore, S.K. Shukla, Potential of macroencapsulated pcm for thermal energy storage in buildings: A comprehensive review. Constr. Build Mater. 225, 723–744 (2019)

    Article  Google Scholar 

  19. M.N.A. Hawlader, M.S. Uddin, M.M. Khin, Microencapsulated PCM thermal-energy storage system. Appl. Energy 74(1–2), 195–202 (2003)

    Article  CAS  Google Scholar 

  20. Y. Konuklu, M. Ostry, H.O. Paksoy, P. Charvat, Review on using microencapsulated phase change materials (PCM) in building applications. Energ. Buildings 106, 134–155 (2015)

    Article  Google Scholar 

  21. A.F. Regin, S.C. Solanki, J.S. Saini, An analysis of a packed bed latent heat thermal energy storage system using PCM capsules: Numerical investigation. Renew. Energy 34(7), 1765–1773 (2009)

    Article  Google Scholar 

  22. A.F. Regin, S.C. Solanki, J.S. Saini, Heat transfer characteristics of thermal energy storage system using PCM capsules: A review. Renew. Sust. Energ. Rev. 12(9), 2438–2458 (2008)

    Article  CAS  Google Scholar 

  23. M.M. Farid, A.M. Khudhair, S.A.K. Razack, S. Al-Hallaj, A review on phase change energy storage: Materials and applications. Energy Convers. Manag. 45(9–10), 1597–1615 (2004)

    Article  CAS  Google Scholar 

  24. C. Mankel, A. Caggiano, N. Ukrainczyk, E. Koenders, Thermal energy storage characterization of cement-based systems containing microencapsulated-PCMs. Constr. Build. Mater. 199, 307–320 (2019)

    Article  CAS  Google Scholar 

  25. Y.M. Amran, N. Farzadnia, A.A. Ali, Properties and applications of foamed concrete; a review. Constr. Build. Mater. 101, 990–1005 (2015)

    Article  Google Scholar 

  26. S.G. Sanfelix, I. Santacruz, A.M. Szczotok, L.M.O. Belloc, G. Angeles, A.L. Kjøniksen, Effect of microencapsulated phase change materials on the flow behavior of cement composites. Constr. Build. Mater. 202, 353–362 (2019)

    Article  CAS  Google Scholar 

  27. M. Ren, X. Wen, X. Gao, Y. Liu, Thermal and mechanical properties of ultra-high performance concrete incorporated with microencapsulated phase change material. Constr. Build. Mater. 273, 121714 (2021)

    Article  CAS  Google Scholar 

  28. A. Ricklefs, A.M. Thiele, G. Falzone, G. Sant, L. Pilon, Thermal conductivity of cementitious composites containing microencapsulated phase change materials. Int. J. Heat Mass Transf. 104, 71–82 (2017)

    Article  CAS  Google Scholar 

  29. M.R. Anisur, M.H. Mahfuz, M.A. Kibria, R. Saidur, I.H.S.C. Metselaar, T.M.I. Mahlia, Curbing global warming with phase change materials for energy storage. Renew. Sust. Energ. Rev. 18, 23–30 (2013)

    Article  Google Scholar 

  30. B. Xu, Z. Li, Paraffin/diatomite composite phase change material incorporated cement-based composite for thermal energy storage. Appl. Energy 105, 229–237 (2013)

    Article  CAS  Google Scholar 

  31. B. Xu, Z. Li, Paraffin/diatomite/multi-wall carbon nanotubes composite phase change material tailor-made for thermal energy storage cement-based composites. Energy 72, 371–380 (2014)

    Article  CAS  Google Scholar 

  32. P.K.S. Rathore, S.K. Shukla, N.K. Gupta, Potential of microencapsulated PCM for energy savings in buildings: A critical review. Sustain. Cities Soc. 53, 101884 (2020)

    Article  Google Scholar 

  33. S. Lu, Y. Li, X. Kong, B. Pang, Y. Chen, S. Zheng, L. Sun, A review of PCM energy storage technology used in buildings for the global warming solution, in Energy Solutions to Combat Global Warming, (Springer, Cham, 2017), pp. 611–644

    Chapter  Google Scholar 

  34. E.A.B. Koenders, Simulation of volume changes in hardening cement-based materials. PhD Thesis, TU-Delft, The Netherlands, ISBN 90-407-1499-1 (1997)

    Google Scholar 

Download references

Acknowledgments

This work is part of the research activities of the NRG-STORAGE (n. 870114, https://nrg-storage.eu/), financed by the EU H2020 under the LC-EEB-01-2019 call, H2020-NMBP-ST-IND-2018-2020/H2020-NMBP-EEB-2019, IA type.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Caggiano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sam, M.N., Caggiano, A., Dubyey, L., Koenders, E. (2022). MPCM-based Porous Cementitious Composites for Enhanced Energy Efficiency of Smart Buildings. In: Ashish, D.K., de Brito, J. (eds) Environmental Concerns and Remediation. Springer, Cham. https://doi.org/10.1007/978-3-031-05984-1_4

Download citation

Publish with us

Policies and ethics