Skip to main content

Volatile Organic Compounds: The Concealed Depreciator of Indoor Air Quality

  • Conference paper
  • First Online:
Environmental Concerns and Remediation

Abstract

Since the average time spent by the people at home and at work has increased significantly over the last few decades, the quality of the indoor environment is critical to their health. Indoor air contaminants come in many forms, with volatile organic compounds (VOCs) being one of the most common. These VOCs have been found to be present in higher amounts in the indoor environment than in open spaces. Indoor air quality is influenced by a number of elements, the most important of which are ventilation and anthropogenic activities. This chapter highlights the various prevalent sources of volatile organic compounds, their impact on human health and the controls that have been implemented to reduce exposure. Furthermore, VOCs are linked to indoor air quality and possible strategies for their improvements. This is accompanied by a brief description of the monitoring system used to detect VOC levels in indoor environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. I. Annesi-Maesano, N. Baiz, S. Banerjee, P. Rudnai, S. Rive, Indoor air quality and sources in schools and related health effects. J. Toxicol. Environ. Health B 16, 491–550 (2013)

    Article  CAS  Google Scholar 

  2. Agency for toxic substances and disease registry (ATSDR). Toxicological profile for xylenes (Update). Public Health Service, U.S. Department of Health and Human Services, Atlanta (1995)

    Google Scholar 

  3. Agency for Toxic Substances and Disease Registry (ATSDR). 6. Potential for human exposure. 6.1 Overview. In: Toxicological profile for styrene. Atlanta: ATSDR, Division of Toxicology and Human Health Sciences (2010), p. 149

    Google Scholar 

  4. Y.C. Ahn, S.K. Park, G.T. Kim, Y.J. Hwang, C.G. Lee, H.S. Shin, J.K. Lee, Development of high efficiency nanofilters made of nanofibers. Curr. Appl. Phys 6(6), 1030–1035 (2006)

    Article  Google Scholar 

  5. C. Ai, H. Hou, Y. Li, R. Beyah, Authentic delay bounded event detection in heterogeneous wireless sensor networks. Ad. Hoc. Netw. 7(3), 599–613 (2009)

    Article  Google Scholar 

  6. A. Ashfaq, P. Sharma, Environmental effects of air pollution and application of engineered methods to combat the problem. J. Ind. Pollut. Control. 29 (2012)

    Google Scholar 

  7. S. Batterman, J.Y. Chin, C. Jia, C. Godwin, E. Parker, T. Robins, et al., Sources, concentrations, and risks of naphthalene in indoor and outdoor air. Indoor Air 22(4), 266–278 (2012)

    Article  CAS  Google Scholar 

  8. S.O. Baek, Y.S. Kim, R. Perry, Indoor air quality in homes, offices, and restaurants in Korean urban areas – Indoor/outdoor relationships. Atmos. Environ. 31, 529–544 (1997). https://doi.org/10.1016/S1352-2310(96)00215-4

    Article  CAS  Google Scholar 

  9. A.B. Bakshi, V.K. Prasanna, Architecture-independent programming for wireless sensor networks, vol 61 (Wiley, Hoboken, 2008)

    Book  Google Scholar 

  10. J.P. Brincat, D. Sardella, A. Muscat, S. Decelis, J.N. Grima, V. Valdramidis, R. Gatt, A review of the state-of-the-art in air filtration technologies as may be applied to cold storage warehouses. Trends Food Sci. Technol. 50, 175–185 (2016)

    Article  CAS  Google Scholar 

  11. G. Buonanno, L. Morawska, L.J.A.E. Stabile, Particle emission factors during cooking activities. Atmos. Environ. 43(20), 3235–3242 (2009)

    Article  CAS  Google Scholar 

  12. N. Carslaw, S. Langer, P. Wolkoff, New directions: Where is the link between reactive indoor air chemistry and health effects? Atmos. Environ. 43(24), 3808–3809 (2009)

    Article  CAS  Google Scholar 

  13. C. Chen, B. Zhao, Review of relationship between indoor and outdoor particles: I/O ratio, infiltration factor and penetration factor. Atmos. Environ. 45(25), 275–288 (2011)

    Article  CAS  Google Scholar 

  14. P. Corke, T. Wark, R. Jurdak, W. Hu, P. Valencia, D. Moore, Environmental wireless sensor networks. Proc. IEEE 98(11), 1903–1917 (2010)

    Article  Google Scholar 

  15. R.D. Edwards, J. Jurvelin, K. Koistinen, K. Saarela, M. Jantunen, VOC source identification from personal and residential indoor, outdoor and workplace microenvironment samples in EXPOLIS, Helsinki, Finland. Atmos. Environ. 35, 4829–4841 (2001)

    Article  CAS  Google Scholar 

  16. R.D. Edwards, C. Schweizer, V. Llacqua, H.K. Lai, M. Jantunen, L. Bayer-Oglesby, N. Künzli, Time–activity relationships to VOC personal exposure factors. Atmos. Environ. 40(29), 5685–5700 (2006)

    Article  CAS  Google Scholar 

  17. B.M. Eklund, S. Burkes, P. Morris, L. Mosconi, Spatial and temporal variability in VOC levels within a commercial retail building. Indoor Air 18(5), 365–374 (2008)

    Article  CAS  Google Scholar 

  18. EPA, U, Volatile Organic Compounds’ Impact on Indoor Air Quality. Recuperado de: https://www.epa.gov/indoor-air-quality-iaq/volatile-organiccompounds-impact-indoor-air-quality#intro (2017)

  19. C.M. Filley, W. Halliday, B.K. Kleinschmidt-DeMasters, The effects of toluene on the central nervous system. J. Neuropathol. Exp. Neurol. 63(1), 1–12 (2004)

    Article  CAS  Google Scholar 

  20. A. Fujishima, K. Honda, Photolysis-decomposition of water at the surface of an irradiated semiconductor. Nature 238, 37–38 (1972)

    Article  CAS  Google Scholar 

  21. C.C. Fung, P. Yang, Y.F. Zhu, Infiltration of diesel exhaust into a mechanically ventilated building. Paper#HP0626 Indoor Air 2014, Hong Kong (2014)

    Google Scholar 

  22. V. Galstyan, A. D’Arco, M. Di Fabrizio, N. Poli, S. Lupi, E. Comini, Detection of volatile organic compounds: From chemical gas sensors to terahertz spectroscopy. Rev. Anal. Chem. 40(1), 33–57 (2021)

    Article  CAS  Google Scholar 

  23. J. Gębicki, A. Kloskowski, W. Chrzanowski, Prototype of electrochemical sensor for measurements of volatile organic compounds in gases. Sens. Actuators B. Chem. 177, 1173–1179 (2013)

    Article  CAS  Google Scholar 

  24. F. Haghighat, L. De Bellis, Material emission rates: literature review, and the impact of indoor air temperature and relative humidity. Build. Environ. 33, 261–277 (1998)

    Article  Google Scholar 

  25. H. Härkönen, K. Lindström, A.M. Seppäläinen, S. Asp, S. Hernberg, Exposure-response relationship between styrene exposure and central nervous functions. Scand. J. Work Environ. Health. 4(1), 53–59 (1978) pmid:644267

    Article  Google Scholar 

  26. A.T. Hodgson, H. Levin, Volatile organic compounds in indoor air: A review of concentrations measured in North America since 1990 (Lawrence Berkeley National Laboratory, San Francisco, CA, 2003)

    Google Scholar 

  27. A.T. Hodgson, D. Beal, J.E.R. McIlvaine, Sources of formaldehyde, other aldehydes and terpenes in a new manufactured house. Indoor Air 12, 235–242 (2002) [PubMed]

    Article  CAS  Google Scholar 

  28. B. Hoffmann, H. Boogaard, A. de Nazelle, Z.J. Andersen, M. Abramson, M. Brauer, et al., WHO air quality guidelines 2021–Aiming for healthier air for all: A joint statement by medical, public health, scientific societies and patient representative organisations. Int. J. Public Health 66, Article 1604465 (2021)

    Article  Google Scholar 

  29. HSDB. Hazardous Substances Data Bank. Specialised Information Services. National Library of Medicine; 2003. Available online at http://toxnet.nlm.nih.gov/

  30. Y. Huang, S.S.H. Ho, Y. Lu, R. Niu, L. Xu, J. Cao, S. Lee, Removal of indoor volatile organic compounds via photocatalytic oxidation: A short review and prospect. Molecules 21, 56 (2016)

    Article  CAS  Google Scholar 

  31. IARC, IARC monographs on the evaluation of carcinogenic risks to humans. Vol. 88. Formaldehyde, 2-butoxyethanol and 1-tert-butoxypropan-2-ol (International Agency for Research on Cancer, Lyon, 2006)

    Google Scholar 

  32. IARC, Styrene, in IARC Monographs on the Evaluation of Carcinogenic Risks to Humans Volume 60 Some Industrial Chemicals, (IARCPress, Lyon, 1994), pp. 233–320

    Google Scholar 

  33. IARC, Styrene, in IARC Monographs on the Evaluation of Carcinogenic Risks to Humans Volume 82 Some Traditional Herbal Medicines, Some Mycotoxins, Naphthalene and Styrene, (IARCPress, Lyon, 2002), pp. 437–550

    Google Scholar 

  34. IARC, Styrene, in IARC Monographs on the Evaluation of Carcinogenic Risks to Humans Volume 121 Styrene, Styrene-7,8-oxide, and Quinoline, (IARCPress, Lyon, 2019), pp. 37–295

    Google Scholar 

  35. IPCS, Benzene. Geneva, World Health Organization, International Programme on Chemical Safety (Environmental Health Criteria 150; http://www.inchem.org/documents/ehc/ehc/ehc150.htm) (1993)

  36. P.L. Jenkins, T.J. Phillips, J.M. Mulberg, S.P. Hui, Activity patterns of Californians: Use of and proximity to indoor pollutant sources. Atmos. Environ. 26A, 2141–2148 (1992). https://doi.org/10.1016/0960-1686(92)90402-7

    Article  CAS  Google Scholar 

  37. C. Jia, S. Batterman, A critical review of naphthalene sources and exposures relevant to indoor and outdoor air. Int. J. Environ. Res. Public Health 7(7), 2903–2939 (2010)

    Article  CAS  Google Scholar 

  38. N.C. Jones, C.A. Thornton, D. Mark, R.M. Harrison, Indoor/outdoor relationships of particulate matter in domestic. Atmos. Environ. 34, 2603–2612 (2000). https://doi.org/10.1016/S1352-2310(99)00489-6

    Article  CAS  Google Scholar 

  39. R. Jurdak, Wireless ad hoc and sensor networks: A cross-layer design perspective (Springer, 2007)

    Google Scholar 

  40. R. Kandyala, S.P.C. Raghavendra, S.T. Rajasekharan, Xylene: An overview of its health hazards and preventive measures. J. Oral Maxillofac. Pathol. 14(1), 1 (2010)

    Article  Google Scholar 

  41. A. Katsoyiannis, P. Leva, D. Kotzias, VOC and carbonyl emissions from carpets: A comparative study using four types of environmental chambers. J. Hazard. Mater. 152, 669–676 (2008)

    Article  CAS  Google Scholar 

  42. R.J. Katulski, J. Namiesnik, J. Stefanski, J. Sadowski, W. Wardencki, K. Szymanska, Mobile monitoring system for gaseous air pollution. Metrol. Meas. Syst. 16, 667–682 (2009)

    Google Scholar 

  43. T.J. Kelly, D.L. Smith, J. Satola, Emission rates of formaldehyde from materials and consumer products found in California homes. Environ. Sci. Technol. 33, 81–88 (1999)

    Article  CAS  Google Scholar 

  44. T. Kida, A. Nishiyama, M. Yuasa, K. Shimanoe, N. Yamazoe, Highly sensitive NO2 sensors using lamellar-structured WO3 particles prepared by an acidification method. Sens. Actuators B Chem. 135, 568–574 (2009)

    Article  CAS  Google Scholar 

  45. D. Kotzias, O. Geiss, S. Tirendi, The AIRMEX (European Indoor Air Monitoring and Exposure Assessment) Project report. European Commission; 2005. http://web.jrc.ec.europa.eu/project/airmex/index.htm

  46. D. Kotzias, K. Koistinen, S. Kephalopoulos, C. Schlitt, P. Carrer, M. Maroni, et al., The INDEX Project: Critical Appraisal of the Setting and Implementation of Indoor Exposure Limits in the EU (European Commission, JRC, Ispra, 2005)

    Google Scholar 

  47. H.W. Kuo, H.Y. Shen, Indoor and outdoor PM2.5 and PM10 concentration in the air during a dust storm. Build. Environ. 45, 610–614 (2010). https://doi.org/10.1016/j.buildenv.2009.07.017

    Article  Google Scholar 

  48. D.Y. Leung, Outdoor-indoor air pollution in urban environment: challenges and opportunity. Front. Environ. Sci. 2, 69 (2015)

    Article  Google Scholar 

  49. X. Li, Wireless Ad Hoc and Sensor Networks: Theory and Applications (Cambridge University Press, 2008)

    Book  Google Scholar 

  50. S.G. Lias, United States, National Bureau of Standards. Gas-Phase Ion and Neutral Thermochemistry (The American Chemical Society and the American Institute of Physics for the National Bureau of Standards, New York, 1988)

    Google Scholar 

  51. S.K. Lim, H.S. Shin, K.S. Yoon, S.J. Kwack, Y.M. Um, J.H. Hyeon, et al., Risk assessment of volatile organic compounds benzene, toluene, ethylbenzene, and xylene (BTEX) in consumer products. J. Toxicol. Environ. Health A 77(22-24), 1502–1521 (2014)

    Article  CAS  Google Scholar 

  52. L. Lucattini, G. Poma, A. Covaci, J.D. Boer, M.H. Lamoree, P.E.G. Leonards, A review of semi-volatile organic compounds (svocs) in the indoor environment: Occurrence in consumer products, indoor air and dust. Chemosphere 201, 466–482 (2018)

    Article  CAS  Google Scholar 

  53. J.F. Meadow, A.E. Altrichter, S.W. Kembel, J. Kline, G. Mhuireach, M. Moriyama, et al., Indoor airborne bacterial communities are influenced by ventilation, occupancy, and outdoor air source. Indoor Air 24, 41–48 (2014). https://doi.org/10.1111/ina.12047

    Article  CAS  Google Scholar 

  54. D.A. Missia, E. Demetriou, N. Michael, E.I. Tolis, J.G. Bartzis, Indoor exposure from building materials: A field study. Atmos. Environ. 44(35), 4388–4395 (2010)

    Article  CAS  Google Scholar 

  55. L. Morawska, C. He, J. Hitchins, K. Mengersen, D. Gilbert, Characteristics of particle number and mass concentrations in residential houses in Brisbane, Australia. Atmos. Environ. 37(30), 4195–4203 (2003)

    Article  CAS  Google Scholar 

  56. A. Mutti, A. Mazzucchi, P. Rustichelli, G. Frigeri, G. Arfini, I. Franchini, Exposure-effect and exposure-response relationships between occupational exposure to styrene and neuropsychological functions. Am. J. Ind. Med. 5(4), 275–286 (1984) pmid:6720691

    Article  CAS  Google Scholar 

  57. P.C. Ölveczky, S. Thorvaldsen, Formal modeling, performance estimation, and model checking of wireless sensor network algorithms in Real-Time Maude. Theor. Comput. Sci. 410(2–3), 254–280 (2009)

    Article  Google Scholar 

  58. P. Rashnuodi, B.F. Dehaghi, H.A. Rangkooy, A. Amiri, S.M. Poor, Evaluation of airborne exposure to volatile organic compounds of benzene, toluene, xylene, and ethylbenzene and its relationship to biological contact index in the workers of a petrochemical plant in the west of Iran. Environ. Monit. Assess. 193(25), 1–10 (2021)

    Google Scholar 

  59. K. Rumchev, H. Brown, J. Spickett, Volatile organic compounds: Do they present a risk to our health? Rev. Environ. Health 22, 39–55 (2007)

    Article  CAS  Google Scholar 

  60. T.M. Sack, D.H. Steele, A survey of household products for volatile organic compounds. Atmos. Environ. 26A, 1063–1070 (1992)

    Article  CAS  Google Scholar 

  61. T. Salthammer, S. Mentese, R. Marutzky, Formaldehyde in the indoor environment. Chem. Rev. 110, 2536–2572 (2010)

    Article  CAS  Google Scholar 

  62. G. Sathiamoorthy, S. Kalyana, W.C. Finney, R.J. Clark, B.R. Locke, Chemical reaction kinetics and reactor modeling of NOx removal in a pulsed streamer corona discharge reactor. Ind. Eng. Chem. Res. 38, 1844–1855 (1999)

    Article  CAS  Google Scholar 

  63. A. Schieweck, Very volatile organic compounds (VVOC) as emissions from wooden materials and in indoor air of new prefabricated wooden houses. Build. Environ 190, 107537 (2021)

    Article  Google Scholar 

  64. T. Schroth, New HEPA/ULPA filters for clean-room technology. Filtr. Sep. 33(3), 245–244 (1996)

    Article  CAS  Google Scholar 

  65. A. Sekar, G.K. Varghese, M.R. Varma, Analysis of benzene air quality standards, monitoring methods and concentrations in indoor and outdoor environment. Heliyon 5(11), e02918 (2019)

    Article  Google Scholar 

  66. L. Spinelle, M. Gerboles, G. Kok, S. Persijn, T. Sauerwald, Review of portable and low-cost sensors for the ambient air monitoring of benzene and other volatile organic compounds. Sensors 17(7), 1520 (2017)

    Article  CAS  Google Scholar 

  67. A. Swami, Q. Zhao, Y. W. Hong, L. Tong (eds.), Wireless sensor networks: Signal processing and communications perspectives (Wiley, 2007)

    Google Scholar 

  68. B. Szulczyński, J. Gębicki, Currently commercially available chemical sensors employed for detection of volatile organic compounds in outdoor and indoor air. Environments 4(1), 21 (2017)

    Article  Google Scholar 

  69. T. Tanaka-Kagawa, H. Jinno, Y. Furukawa, T. Nishimura, Volatile organic compounds (VOCs) emitted from furniture and electrical appliances. KokuritsuIyakuhinShokuhin Eisei Kenkyujohokoku= Bulletin of National Institute of Health Sciences 128, 71–77 (2010)

    CAS  Google Scholar 

  70. G.D. Thurston, H. Kipen, I. Annesi-Maesano, J. Balmes, R.D. Brook, K. Cromar, et al., A joint ERS/ATS policy statement: What constitutes an adverse health effect of air pollution? An analytical framework. Eur. Respir. J. 49(1) (2017). https://doi.org/10.1183/13993003.00419-2016

  71. R.S. Tobin, M. Bourgeau, R. Otson, G.C. Wood, Residential indoor air quality guidelines. Indoor Environ. 2(5-6), 267–275 (1993)

    CAS  Google Scholar 

  72. V.V. Tran, D. Park, Y.C. Lee, Indoor air pollution, related human diseases, and recent trends in the control and improvement of indoor air quality. Int. J. Environ. Res. Public Health 17(8), 2927 (2020)

    Article  CAS  Google Scholar 

  73. US Consumer Product Safety Commission. The inside story: a guide to indoor air quality. US Environmental Protection Agency. (1993)

    Google Scholar 

  74. US EPA, O., Text Version of the Indoor Air Quality House Tour [WWW Document]. US EPA. https://www.epa.gov/indoor-air-quality-iaq/textversion-indoor-air-quality-house-tour (2014)

  75. US EPA, O., Technical Overview of Volatile Organic Compounds [WWW Document]. US EPA. https://www.epa.gov/indoor-air-quality-iaq/technical-overview-volatile-organic-compounds (2014)

  76. USEPA, Indoor Particulate Matter. Available online: https://www.epa.gov/indoor-air-quality-iaq/indoorparticulate-matter. Accessed 21 Dec 2021

  77. L.A. Wallace, E.D. Pellizzari, T.D. Hartwell, C.M. Sparacino, L.S. Sheldon, H. Zelon, Personal exposures, indoor-outdoor relationship, and breath levels of toxic air pollutants measured for 355 persons in New Jersey. Atmos. Environ. 19, 1651–1661 (1985)

    Article  CAS  Google Scholar 

  78. Y.C. Wang, C.C. Hu, Y.C. Tseng, Efficient placement and dispatch of sensors in a wireless sensor network. IEEE Trans. Mobile Comput. 7(25), 262–274 (2007)

    Google Scholar 

  79. N. Wang, A. Raza, Y. Si, J. Yu, G. Sun, B. Ding, Tortuously structured polyvinyl chloride/polyurethane fibrous membranes for high- efficiency fine particulate filtration. J. Colloid Interface Sci. 398, 240–246 (2013)

    Article  CAS  Google Scholar 

  80. M. Wei-Hao Li, A. Ghosh, A. Venkatasubramanian, R. Sharma, X. Huang, X. Fan, High-Sensitivity Micro-Gas Chromatograph– Photoionization Detector for Trace Vapor Detection (ACS Sensors, 2021)

    Book  Google Scholar 

  81. C.J. Weschler, H.C. Shields, Potential reactions among indoor pollutants. Atmos. Environ. 31(21), 3487–3495 (1997)

    Article  Google Scholar 

  82. C.J. Weschler, Changes in indoor pollutants since the 1950s. Atmos. Environ. 43, 153–169 (2009)

    Article  CAS  Google Scholar 

  83. WHO, World Health Organization, Formaldehyde. Environmental Health Criteria, No. 89, International Agency for Research on Cancer IARC, Formaldehyde. Wood dust and formaldehyde. Geneva (1989)

    Google Scholar 

  84. WHO, Guidelines for Air Quality (WHO, Geneva, 2000). Available in the Internet at http://www.who.int/peh/air/Airqualitygd.htm (2010)

  85. World Health Organization (WHO, 2020), Household air pollution and health. Available online at: https://www.who.int/news-room/fact-sheets/detail/household-air-pollution-and-health

  86. C. Yrieix, A. Dulaurent, C. Laffargue, F. Maupetit, T. Pacary, E. Uhde, Characterization of VOC and formaldehyde emissions from a wood based panel: Results from an inter-laboratory comparison. Chemosphere 79(4), 414–419 (2010)

    Article  CAS  Google Scholar 

  87. T.C. Yu, C.C. Lin, C.C. Chen, W.L. Lee, R.G. Lee, C.H. Tseng, S.P. Liu, Wireless sensor networks for indoor air quality monitoring. Med. Eng. Phys. 35(25), 231–235 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Srivastava, N., Negi, S. (2022). Volatile Organic Compounds: The Concealed Depreciator of Indoor Air Quality. In: Ashish, D.K., de Brito, J. (eds) Environmental Concerns and Remediation. Springer, Cham. https://doi.org/10.1007/978-3-031-05984-1_16

Download citation

Publish with us

Policies and ethics