Skip to main content

A Novel Bayesian Deep Learning Approach to the Downscaling of Wind Speed with Uncertainty Quantification

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13282))

Included in the following conference series:

Abstract

Wind plays a crucial part during adverse events, such as storms and wildfires, and is a widely leveraged source of renewable energy. Predicting long-term daily local wind speed is critical for effective monitoring and mitigation of climate change, as well as to locate suitable locations for wind farms. Long-term simulations of wind dynamics (until year 2100) are given by various general circulation models (GCMs). However, GCM simulations are at a grid with coarse spatial resolution (>100 km), which renders spatial downscaling to a smaller scale an important prerequisite for climate-impacts studies. In this work, we propose a novel deep learning approach, named Bayesian AIG-Transformer, that consists of an attention-based input grouping (AIG), transformer, and uncertainty quantification. We use the proposed approach for the spatial downscaling of daily average wind speed (AWND), formulated as a multivariate time series forecasting problem, over four locations within New Jersey and Pennsylvania. To calibrate and evaluate our deep learning approach, we use large-scale observations extracted from NOAA’s NCEP/NCAR reanalysis dataset (2.5° × 2.5° resolution), which provides a proxy for GCM data when evaluating the model. Results show that our approach is suitable for the downscaling task, outperforming related machine learning methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. He, X., Chaney, N.W., Schleiss, M., Sheffield, J.: Spatial downscaling of precipitation using adaptable random forests. Water Resour. Res. 52, 8217–8237 (2016)

    Article  Google Scholar 

  2. Sachindra, D., Ahmed, K., Rashid, M.M., Shahid, S., Perera, B.: Statistical downscaling of precipitation using machine learning techniques. Atmos. Res. 212, 240–258 (2018)

    Article  Google Scholar 

  3. Coulibaly, P.: Downscaling daily extreme temperatures with genetic programming. Geophys. Res. Lett. 31 (2004)

    Google Scholar 

  4. Li, X., Li, Z., Huang, W., Zhou, P.: Performance of statistical and machine learning ensembles for daily temperature downscaling. Theoret. Appl. Climatol. 140(1–2), 571–588 (2020). https://doi.org/10.1007/s00704-020-03098-3

    Article  Google Scholar 

  5. Misra, S., Sarkar, S., Mitra, P.: Statistical downscaling of precipitation using long short-term memory recurrent neural networks. Theoret. Appl. Climatol. 134(3–4), 1179–1196 (2017). https://doi.org/10.1007/s00704-017-2307-2

    Article  Google Scholar 

  6. Hu, W., Scholz, Y., Yeligeti, M., von Bremen, L., Schroedter-Homscheidt, M.: Statistical downscaling of wind speed time series data based on topographic variables. In: EGU General Assembly Conference Abstracts, pp. EGU21–12734 (2021)

    Google Scholar 

  7. Kirchmeier, M.C., Lorenz, D.J., Vimont, D.J.: Statistical downscaling of daily wind speed variations. J. Appl. Meteorol. Climatol. 53, 660–675 (2014)

    Article  Google Scholar 

  8. Sun, L., Lan, Y.: Statistical downscaling of daily temperature and precipitation over China using deep learning neural models: localization and comparison with other methods. Int. J. Climatol. 41, 1128–1147 (2021)

    Article  Google Scholar 

  9. Yang, Z., et al.: LegoNet: efficient convolutional neural networks with lego filters. In: 36th International Conference on Machine Learning, pp. 7005–7014. PMLR (2019)

    Google Scholar 

  10. Pan, X., Shi, J., Luo, P., Wang, X., Tang, X.: Spatial as deep: spatial CNN for traffic scene understanding. In: 32nd AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  11. Jin, C., Liang, H., Chen, D., Lin, Z., Wu, M.: Identifying mobility of drug addicts with multilevel spatial-temporal convolutional neural network. In: Yang, Q., Zhou, Z.-H., Gong, Z., Zhang, M.-L., Huang, S.-J. (eds.) PAKDD 2019. LNCS (LNAI), vol. 11439, pp. 477–488. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16148-4_37

    Chapter  Google Scholar 

  12. Liu, Z., Wan, M., Guo, S., Achan, K., Yu, P.S.: BasConv: aggregating heterogeneous interactions for basket recommendation with graph convolutional neural network. In: Proceedings of the 2020 SIAM International Conference on Data Mining, pp. 64–72. SIAM (2020)

    Google Scholar 

  13. Guo, T., Lin, T., Antulov-Fantulin, N.: Exploring interpretable LSTM neural networks over multi-variable data. In: 36th International Conference on Machine Learning, pp. 2494–2504. PMLR (2019)

    Google Scholar 

  14. Hu, Z., Turki, T., Phan, N., Wang, J.T.L.: A 3D atrous convolutional long short-term memory network for background subtraction. IEEE Access 6, 43450–43459 (2018)

    Article  Google Scholar 

  15. Liu, H., Liu, C., Wang, J.T.L., Wang, H.: Predicting solar flares using a long short-term memory network. Astrophys J. 877, 121 (2019)

    Article  Google Scholar 

  16. Segovia-Dominguez, I., Zhen, Z., Wagh, R., Lee, H., Gel, Y.R.: TLife-LSTM: forecasting future COVID-19 progression with topological signatures of atmospheric conditions. In: Karlapalem, K., et al. (eds.) PAKDD 2021. LNCS (LNAI), vol. 12712, pp. 201–212. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75762-5_17

    Chapter  Google Scholar 

  17. Shalaby, M., Stutzki, J., Schubert, M., Günnemann, S.: An LSTM approach to patent classification based on fixed hierarchy vectors. In: Proceedings of the 2018 SIAM International Conference on Data Mining, pp. 495–503. SIAM (2018)

    Google Scholar 

  18. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  19. Zerveas, G., Jayaraman, S., Patel, D., Bhamidipaty, A., Eickhoff, C.: A transformer-based framework for multivariate time series representation learning. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 2114–2124 (2021)

    Google Scholar 

  20. Menne, M.J., Durre, I., Vose, R.S., Gleason, B.E., Houston, T.G.: An overview of the global historical climatology network-daily database. J. Atmos. Oceanic Tech. 29, 897–910 (2012)

    Article  Google Scholar 

  21. Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L.: The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteor. Soc. 77, 437–471 (1996)

    Article  Google Scholar 

  22. Parmar, N., et al.: Image transformer. In: 35th International Conference on Machine Learning, pp. 4055–4064. PMLR (2018)

    Google Scholar 

  23. Cai, T., Shen, M., Peng, H., Jiang, L., Dai, Q.: Improving transformer with sequential context representations for abstractive text summarization. In: Tang, J., Kan, M.-Y., Zhao, D., Li, S., Zan, H. (eds.) NLPCC 2019. LNCS (LNAI), vol. 11838, pp. 512–524. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32233-5_40

    Chapter  Google Scholar 

  24. Guo, D., Terzopoulos, D.: A transformer-based network for anisotropic 3D medical image segmentation. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 8857–8861. IEEE (2021)

    Google Scholar 

  25. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: 33rd International Conference on Machine Learning, pp. 1050–1059. PMLR (2016)

    Google Scholar 

  26. Roy, S., et al.: Deep learning for classification and localization of COVID-19 markers in point-of-care lung ultrasound. IEEE Trans. Med. Imaging 39, 2676–2687 (2020)

    Article  Google Scholar 

  27. Blei, D.M., Kucukelbir, A., McAuliffe, J.D.: Variational inference: a review for statisticians. J. Am. Stat. Assoc. 112, 859–877 (2017)

    Article  MathSciNet  Google Scholar 

  28. Kwon, Y., Won, J.-H., Kim, B.J., Paik, M.C.: Uncertainty quantification using Bayesian neural networks in classification: application to biomedical image segmentation. Comput. Stat. Data Anal. 142, 106816 (2020)

    Article  MathSciNet  Google Scholar 

  29. Jiang, H., et al.: Tracing Hα fibrils through Bayesian deep learning. Astrophys. J. Suppl. Ser. 256, 20 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Bridge Resource Program (BRP) from the New Jersey Department of Transportation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Firas Gerges .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gerges, F., Boufadel, M.C., Bou-Zeid, E., Nassif, H., Wang, J.T.L. (2022). A Novel Bayesian Deep Learning Approach to the Downscaling of Wind Speed with Uncertainty Quantification. In: Gama, J., Li, T., Yu, Y., Chen, E., Zheng, Y., Teng, F. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2022. Lecture Notes in Computer Science(), vol 13282. Springer, Cham. https://doi.org/10.1007/978-3-031-05981-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05981-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05980-3

  • Online ISBN: 978-3-031-05981-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics