Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. In: ICLR (2015)
Google Scholar
Wang, R., Shivanna, R., et al.: DCN V2: improved deep & cross network and practical lessons for web-scale learning to rank systems. In: WWW, pp. 1785–1797 (2021)
Google Scholar
Cheng, H.-T., Koc, L., et al.: Wide & deep learning for recommender systems. In: Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, pp. 7–10 (2016)
Google Scholar
Cheng, W., Shen, Y., Huang, L.: Adaptive factorization network: learning adaptive-order feature interactions. In: AAAI, pp. 3609–3616 (2020)
Google Scholar
McMahan, H.B., Holt, G., et al.: Ad click prediction: a view from the trenches. In: The 19th SIGKDD, 11–14 August 2013 (2013)
Google Scholar
Guo, H., Tang, R., Ye, Y., Li, Z., He, X.: DeepFM: a factorization-machine based neural network for CTR prediction. In: IJCAI, pp. 1725–1731 (2017)
Google Scholar
Graepel, T., Candela, J.Q., Borchert, T., Herbrich, R.: Web-scale Bayesian click-through rate prediction for sponsored search advertising in Microsoft’s Bing search engine. Omnipress (2010)
Google Scholar
Wang, Z., Zhang, R., Qi, J., Yuan, B.: DBSVEC: density-based clustering using support vector expansion. In: ICDE, pp. 280–291. IEEE (2019)
Google Scholar
Lee, K., Orten, B., Dasdan, A., Li, W.: Estimating conversion rate in display advertising from past erformance data. In: KDD, pp. 768–776 (2012)
Google Scholar
Wang, Z., Liu, L., Tao, D.: Deep streaming label learning. In: International Conference on Machine Learning (ICML) (2020)
Google Scholar
Qu, Y., et al.: Product-based neural networks for user response prediction. In: ICDM, pp. 1149–1154. IEEE (2016)
Google Scholar
Lian, J., Zhou, X., Zhang, F., Chen, Z., Xie, X., Sun, G.: xDeepFM: combining explicit and implicit feature interactions for recommender systems. In: KDD, pp. 1754–1763 (2018)
Google Scholar
He, X., Chua, T.-S.: Neural factorization machines for sparse predictive analytics. In: SIGIR, pp. 355–364 (2017)
Google Scholar
Xiao, J., Ye, H., He, X., Zhang, H., et al.: Attentional factorization machines: learning the weight of feature interactions via attention networks. In: IJCAI (2017)
Google Scholar
Hines, J.W.: A logarithmic neural network architecture for unbounded non-linear function approximation. In: IEEE ICNN 1996 (1996)
Google Scholar
Juan, Y., Zhuang, Y., Chin, W.-S., Lin, C.-J.: Field-aware factorization machines for CTR prediction. In: RecSys (2016)
Google Scholar
Song, W., Shi, C., et al.: AutoInt: automatic feature interaction learning via self-attentive neural networks. In: CIKM (2019)
Google Scholar
Wang, R., Fu, B., Fu, G., Wang, M.: Deep & cross network for ad click predictions. In: KDD, pp. 1–7 (2017)
Google Scholar
Huang, T., Zhang, Z., Zhang, J.: FiBiNET: combining feature importance and bilinear feature interaction for click-through rate prediction. In: ACM RecSys (2019)
Google Scholar
Rendle, S.: Factorization machines. In: 2010 IEEE International Conference on Data Mining, pp. 995–1000. IEEE (2010)
Google Scholar
Blondel, M., Fujino, A., Ueda, N., Ishihata, M.: Higher-order factorization machines. In: NIPS (2016)
Google Scholar
Yu, Y., Wang, Z., Yuan, B.: An input-aware factorization machine for sparse prediction. In: IJCAI (2019)
Google Scholar
Zhang, W., Du, T., Wang, J.: Deep learning over multi-field categorical data. In: Ferro, N., et al. (eds.) ECIR 2016. LNCS, vol. 9626, pp. 45–57. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30671-1_4
CrossRef
Google Scholar