Skip to main content

Additive Manufacturing of a Laser Heat Sink: Multiphysical Simulation for Thermal Material Requirement Derivation

  • Conference paper
  • First Online:
Innovative Product Development by Additive Manufacturing 2021

Abstract

Heat dissipation inside diode-pumped Nd:YVO4 laser crystals requires an efficient cooling concept to reduce heat-induced stress and thus to avoid the mechanical destruction of the laser medium. Due to a high degree of design freedom, additive manufacturing of heat sinks offers great potentials to integrate cooling channels and sensors within a single component. These advantages are associated with a reduced choice of materials. The thermal and mechanical properties of the printing material have a significant impact on the emerging stress. For a suitable choice of printing material, temperatures and stress occurring in the application of the product are calculated using a multi-physical simulation model. By coupling optical, thermal and mechanical effects within a single simulation model, the mechanical stress in the laser crystal is investigated as a function of thermal material properties. Based on this information, thermal requirements are defined to ensure a non-destructive operation of a present laser application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lachmayer, R., & Lippert, R.B. (2020). Entwicklungsmethodik für die Additive Fertigung. Springer.https://doi.org/10.1007/978-3-662-59789-7.

  2. Kranert, F., Budde. J., Neef, P., Bernhard, R., Lammers, M., Rettschlag, K., Grabe, T., Wienke, A., Neumann, J., Wiche, H., Wesling, V., Ahlers, H., Lachmayer, R., & Kracht, D. (2020). 3D-printed, low-cost, lightweight optomechanics for a compact, low-power solid-state amplifier system, p. 4.

    Google Scholar 

  3. Kranert, F. (Hrsg). (2021). Thermische und strukturelle Analyse von Polymermaterialen in generativ gefertigten Optomechaniken für den Einsatz in der Laserentwicklung, Bd. 10.

    Google Scholar 

  4. Délen, X., Balembois, F., & Georges, P. (2011). Temperature dependence of the emission cross section of Nd:YVO_4 around 1064 nm and consequences on laser operation. Journal of the Optical Society of America B: Optical Physics, 28(5), 972. https://doi.org/10.1364/JOSAB.28.000972

    Article  Google Scholar 

  5. Grabe, T., Budde, J., Kranert, F., Wienke, A., Neumann, J., Kracht, D., & Lachmayer, R. (2020). Kühlkörper-Designansatz für einen in AlSi10Mg eingebetteten YAG-Laserkristall, S 159– 175. https://doi.org/10.1007/978-3-662-61149-4.

  6. Formfutura Datasheet Classic Copper MetalFil

    Google Scholar 

  7. Bargel, H.-J., Schulze, G., & Hilbrans, H. (Eds.). (2008). Werkstoffkunde (10th ed.). Springer.

    Google Scholar 

  8. Elkholy, A., Rouby, M., & Kempers, R. (2019). Characterization of the anisotropic thermal conductivity of additively manufactured components by fused filament fabrication. Progress in Additive Manufacturing, 4(4), 497–515. https://doi.org/10.1007/s40964-019-00098-2

    Article  Google Scholar 

  9. Wang, Y., Yang, W., Zhou, H., Huo, M., & Zheng, Y. (2013). Temperature dependence of the fractional thermal load of Nd:YVO4 at 1064 nm lasing and its influence on laser performance. Optics Express, 21(15), 18068–18078. https://doi.org/10.1364/OE.21.018068

    Article  Google Scholar 

  10. Peng, X., Asundi, A., Chen, Y., & Xiong, Z. (2001). Study of the mechanical properties of Nd:YVO4 crystal by use of laser interferometry and finite-element analysis. Applied Optics, 40(9), 1396–1403. https://doi.org/10.1364/AO.40.001396

    Article  Google Scholar 

  11. VDI-Gesellschaft Produktion und Logistik. (2020). Additive manufacturing—Legal aspects of the process chain. VDI-Gesellschaft Produktion und Logistik

    Google Scholar 

  12. Kranert, F., Budde, J., Hinkelmann, M., Wienke, A., Neumann, J., Kracht, D., & Lachmayer, R. (2021–2021) Quasi-monolithic laser system based on 3D-printed optomechanics, S. 19.

    Google Scholar 

  13. Träger, F. (Ed.). (2007). Springer handbook of lasers and optics. Springer.

    Google Scholar 

  14. Schöne, W. (1998). Theoretische und experimentelle Untersuchung thermischer Effekte in diodengepumpten Hochleistungs-Nd:YAG-Stablasern. Universität. https://doi.org/10.15488/5716

    Book  Google Scholar 

  15. Chen, Y.-F. (1999). Design criteria for concentration optimization in scaling diode end-pumped lasers to high powers: Influence of thermal fracture. IEEE Journal of Quantum Electronics, 35(2), 234–239. https://doi.org/10.1109/3.740746

    Article  Google Scholar 

  16. Blows, J. L., Omatsu, T., Dawes, J., Pask, H., & Tateda, M. (1998). Heat generation in Nd:YVO 4 with and without laser action. IEEE Photonics Technology Letters, 10(12), 1727–1729. https://doi.org/10.1109/68.730483

    Article  Google Scholar 

  17. Xiong, Z., Li, Z. G., Moore, N., Huang, W. L., & Lim, G. C. (2003). Detailed investigation of thermal effects in longitudinally diode-pumped Nd:YVO/sub 4/lasers. IEEE Journal of Quantum Electronics, 39(8), 979–986. https://doi.org/10.1109/JQE.2003.814371

    Article  Google Scholar 

  18. Pfistner, C., Weber, R., Weber, H. P., Merazzi, S., & Gruber, R. (1994). Thermal beam distortions in end-pumped Nd:YAG, Nd:GSGG, and Nd:YLF rods. IEEE Journal of Quantum Electronics, 30(7), 1605–1615. https://doi.org/10.1109/3.299492

    Article  Google Scholar 

  19. Lienhard, J. H. (2011). A heat transfer textbook (4th ed.). Dover Publ.

    Google Scholar 

  20. Spurk, J. H. (2004). Strömungslehre (5th ed.). Springer.

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This research has been funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germanys Excellence Strategy within the Cluster of Excellence PhoenixD (EXC 2122, Project ID 390833453), funded by the Ministry for Science and Culture of Lower Saxony (MWK)—School for Additive Manufacturing SAM and funded by EFRE—Nbank within the project GROTESK—Generative Fertigung optischer, thermaler und struktureller Komponenten (ZW6-85018307, ZW6-85017815, ZW6-85017913, ZW6-85018048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Röttger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Röttger, J. et al. (2023). Additive Manufacturing of a Laser Heat Sink: Multiphysical Simulation for Thermal Material Requirement Derivation. In: Lachmayer, R., Bode, B., Kaierle, S. (eds) Innovative Product Development by Additive Manufacturing 2021. Springer, Cham. https://doi.org/10.1007/978-3-031-05918-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05918-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05917-9

  • Online ISBN: 978-3-031-05918-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics