Skip to main content

Advances in Wave Run-Up Measurement Techniques

  • Chapter
  • First Online:
Advances on Testing and Experimentation in Civil Engineering

Abstract

Wave run-up is defined as the elevation of wave uprush on the beach profile or coastal structures above the still water level. Common applications of wave run-up measures include the prediction of flood events during storms, the design of coastal structures and the assessment of vulnerability in coastal management plans. This chapter gives a general overview of the techniques adopted to measure wave run-up. Traditional techniques, such as resistance wires, wave gauges, pressure sensors and ultrasonic sensors have been used in the field and laboratory. The advent of shore-base video monitoring systems have significantly improved the measurement on beaches in the last two decades.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. U.S. Army Corps of Engineers: Coastal Engineering Manual (EM 1110-2-1100) (2002)

    Google Scholar 

  2. Guza, R.T., Thornton, E.B.: Swash oscillations on a natural beach. J. Geophys. Res. 87, 483–491 (1982). https://doi.org/10.1029/JC087iC01p00483

    Article  Google Scholar 

  3. Hunt, I.A.: Design of seawalls and breakwaters. J. Waterw. Harb. Div. 85, 123–152 (1956)

    Article  Google Scholar 

  4. Holman, R.A.: Extreme value statistics for wave run-up on a natural beach. Coast. Eng. 9(6), 527–544 (1986). https://doi.org/10.1016/0378-3839(86)90002-5

    Article  Google Scholar 

  5. Gomes da Silva, P., Coco, G., Garnier, R., Klein, A.H.F.: On the prediction of runup, setup and swash on beaches. Earth-Sci. Rev. 204, 103148 (2020). https://doi.org/10.1016/j.earscirev.2020.103148

  6. Douglass, S.: Estimating Runup on Beaches: A Review of the State of the Art. USACE Report AD-A229 516. Washington, DC (1990)

    Google Scholar 

  7. Kobayashi, N.: Wave runup and overtopping on beaches and coastal structures. In: Advanced Series in Coastal and Ocean Engineering, pp. 95–154. World Scientific (1999). https://doi.org/10.1142/9789812797544_0002

  8. Weggel, J.R.: Wave overtopping equation. Coast. Eng. Proc. 1(15), 2737–2755 (1976)

    Google Scholar 

  9. Mase, H., Tamada, T., Yasuda, T., Hedges, T.S., Reis, M.T.: Wave runup and overtopping at seawalls built on land and in very shallow water. J. Waterw. Port Coast. Ocean Eng. (2013). https://doi.org/10.1061/(asce)ww.1943-5460.0000199

  10. Nielsen, P., Hanslow, D.J.: Wave runup distributions on natural beaches. J. Coast. Res. 7, 1139–1152 (1991). https://doi.org/10.2307/4297933

    Article  Google Scholar 

  11. Turner, I.L., Russell, P.E., Butt, T.: Measurement of wave-by-wave bed-levels in the swash zone. Coast. Eng. 55, 1237–1242 (2008). https://doi.org/10.1016/j.coastaleng.2008.09.009

    Article  Google Scholar 

  12. Dodet, G., Leckler, F., Sous, D., Ardhuin, F., Filipot, J.F., Suanez, S.: Wave runup over steep rocky cliffs. J. Geophys. Res. Oceans 123, 7185–7205 (2018). https://doi.org/10.1029/2018JC013967

    Article  Google Scholar 

  13. Raubenheimer, B., Guza, R.T., Elgar, S., Kobayashi, N.: Swash on a gently sloping beach. J. Geophys. Res. 100, 8751–8760 (1995). https://doi.org/10.1029/95JC00232

    Article  Google Scholar 

  14. Hughes, M.G., Moseley, A.S., Baldock, T.E.: Probability distributions for wave runup on beaches. Coast. Eng. 57, 575–584 (2010). https://doi.org/10.1016/j.coastaleng.2010.01.001

    Article  Google Scholar 

  15. Pillai, K., Etemad-Shahidi, A., Lemckert, C.: Wave run-up on bermed coastal structures. Appl. Ocean Res. 86, 188–194 (2019). https://doi.org/10.1016/j.apor.2019.02.006

    Article  Google Scholar 

  16. Manno, G., Lo Re, C., Ciraolo, G.: Uncertainties in shoreline position analysis: the role of run-up and tide in a gentle slope beach. Ocean Sci. 13, 661–671 (2017). https://doi.org/10.5194/os-13-661-2017

    Article  Google Scholar 

  17. Swenson, M.: Wave runup. http://homepages.cae.wisc.edu/~chinwu/GLE401/web/Mike/Wave%20runup.htm. Accessed 1 Mar 2021

  18. Masselink, G., Russell, P., Turner, I., Blenkinsopp, C.: Net sediment transport and morphological change in the swash zone of a high-energy sandy beach from swash event to tidal cycle time scales. Mar. Geol. 267, 18–35 (2009). https://doi.org/10.1016/j.margeo.2009.09.003

    Article  Google Scholar 

  19. Holman, R.A., Stanley, J.: The history and technical capabilities of Argus. Coast. Eng. 54, 477–491 (2007). https://doi.org/10.1016/j.coastaleng.2007.01.003

    Article  Google Scholar 

  20. Splinter, K.D., Harley, M.D., Turner, I.L.: Remote sensing is changing our view of the coast: insights from 40 years of monitoring at Narrabeen-Collaroy, Australia. Remote Sens. 10, 1744 (2018). https://doi.org/10.3390/rs10111744

    Article  Google Scholar 

  21. Andriolo, U.: Nearshore hydrodynamics and morphology derived from video images. Ph.D. Thesis, University of Lisbon 224 pp. (2018)

    Google Scholar 

  22. Nieto, M.A., Garau, B., Balle, S., Simarro, G., Zarruk, G.A., Ortiz, A., Tintoré, J., Álvarez-Ellacuría, A., Gómez-Pujol, L., Orfila, A.: An open source, low cost video-based coastal monitoring system. Earth Surf. Process. Landforms 35, 1712–1719 (2010). https://doi.org/10.1002/esp.2025

  23. Taborda, R., Silva, A.: COSMOS: a lightweight coastal video monitoring system. Comput. Geosci. 49, 248–255 (2012). https://doi.org/10.1016/j.cageo.2012.07.013

    Article  Google Scholar 

  24. Brignone, M., Schiaffino, C.F., Isla, F.I., Ferrari, M.: A system for beach video-monitoring: beachkeeper plus. Comput. Geosci. 49, 53–61 (2012). https://doi.org/10.1016/j.cageo.2012.06.008

    Article  Google Scholar 

  25. Simarro, G., Ribas, F., Álvarez, A., Guillén, J., Chic, Ò., Orfila, A.: ULISES: an open source code for extrinsic calibrations and planview generations in coastal video monitoring systems. J. Coast. Res. 335, 1217–1227 (2017). https://doi.org/10.2112/JCOASTRES-D-16-00022.1

    Article  Google Scholar 

  26. Senechal, N., Coco, G., Bryan, K.R., Holman, R.A.: Wave runup during extreme storm conditions. J. Geophys. Res. Oceans 116 (2011). https://doi.org/10.1029/2010JC006819

  27. Schimmels, S., Vousdoukas, M., Wziatek, D., Becker, K., Gier, F., Oumeraci, H.: Wave run-up observations on revetments with different porosities. In: Lynett, P., Smith, J.M. (eds.) Coastal Engineering Proceedings, pp. 1–14 (2012). https://doi.org/10.9753/icce.v33.structures.73

  28. Vousdoukas, M.I., Kirupakaramoorthy, T., Oumeraci, H., de la Torre, M., Wübbold, F., Wagner, B., Schimmels, S.: The role of combined laser scanning and video techniques in monitoring wave-by-wave swash zone processes. Coast. Eng. 83, 150–165 (2014). https://doi.org/10.1016/j.coastaleng.2013.10.013

    Article  Google Scholar 

  29. Andriolo, U., Sánchez-García, E., Taborda, R.: Operational use of surfcam online streaming images for coastal morphodynamic studies. Remote Sens. 11(1), 1–21 (2019). https://doi.org/10.3390/rs11010078

    Article  Google Scholar 

  30. Sánchez-García, E., Balaguer-Beser, A., Pardo-Pascual, J.E.: C-Pro: a coastal projector monitoring system using terrestrial photogrammetry with a geometric horizon constraint. ISPRS J. Photogramm. Remote Sens. 128, 255–273 (2017). https://doi.org/10.1016/j.isprsjprs.2017.03.023

    Article  Google Scholar 

  31. Simarro, G., Bryan, K.R., Guedes, R.M.C., Sancho, A., Guillen, J., Coco, G.: On the use of variance images for runup and shoreline detection. Coast. Eng. 99, 136–147 (2015). https://doi.org/10.1016/j.coastaleng.2015.03.002

    Article  Google Scholar 

  32. Andriolo, U.: Nearshore wave transformation domains from video imagery. J. Mar. Sci. Eng. 7, 186 (2019). https://doi.org/10.3390/jmse7060186

    Article  Google Scholar 

  33. Aagaard, T., Holm, J.: Digitization of wave run-up using video records. J. Coast. Res. 5, 547–551 (1989). https://doi.org/10.2307/4297566

    Article  Google Scholar 

  34. Holland, K.T., Holman, R.A.: The statistical distribution of swash maxima on natural beaches. J. Geophys. Res. 98, 271–278 (1993). https://doi.org/10.1029/93JC00035

    Article  Google Scholar 

  35. Gomes da Silva, P., Medina, R., González, M., Garnier, R.: Infragravity swash parameterization on beaches: The role of the profile shape and the morphodynamic beach state. Coast. Eng. 136, 41–55 (2018). https://doi.org/10.1016/j.coastaleng.2018.02.002

  36. Atkinson, A.L., Power, H.E., Moura, T., Hammond, T., Callaghan, D.P., Baldock, T.E.: Assessment of runup predictions by empirical models on non-truncated beaches on the south-east Australian coast. Coast. Eng. 119, 15–31 (2017). https://doi.org/10.1016/j.coastaleng.2016.10.001

    Article  Google Scholar 

  37. Stockdon, H.F., Holman, R.A., Howd, P.A., Sallenger, A.H.: Empirical parameterization of setup, swash, and runup. Coast. Eng. 53, 573–588 (2006). https://doi.org/10.1016/j.coastaleng.2005.12.005

    Article  Google Scholar 

  38. Vousdoukas, M.I., Wziatek, D., Almeida, L.P.: Coastal vulnerability assessment based on video wave run-up observations at a mesotidal, steep-sloped beach. Ocean Dyn. 62, 123–137 (2012). https://doi.org/10.1007/s10236-011-0480-x

    Article  Google Scholar 

  39. Almar, R., Blenkinsopp, C., Almeida, L.P., Cienfuegos, R., Catalán, P.A.: Wave runup video motion detection using the Radon Transform. Coast. Eng. 130, 46–51 (2017). https://doi.org/10.1016/j.coastaleng.2017.09.015

    Article  Google Scholar 

  40. Huisman, C.E., Bryan, K.R., Coco, G., Ruessink, B.G.: The use of video imagery to analyse groundwater and shoreline dynamics on a dissipative beach. Cont. Shelf Res. 31, 1728–1738 (2011). https://doi.org/10.1016/j.csr.2011.07.013

    Article  Google Scholar 

  41. Ruggiero, P., Holman, R.A., Beach, R.A.: Wave run-up on a high-energy dissipative beach. J. Geophys. Res. Oceans 109, 1–12 (2004). https://doi.org/10.1029/2003JC002160

    Article  Google Scholar 

  42. Salmon, S.A., Bryan, K.R., Coco, G.: The use of video systems to measure run-up on beaches. J. Coast. Res. 211–215 (2007)

    Google Scholar 

  43. Senechal, N., Abadie, S., Gallagher, E., MacMahan, J., Masselink, G., Michallet, H., Reniers, A., Ruessink, G., Russell, P., Sous, D., Turner, I., Ardhuin, F., Bonneton, P., Bujan, S., Capo, S., Certain, R., Pedreros, R., Garlan, T.: The ECORS-Truc Vert’08 nearshore field experiment: presentation of a three-dimensional morphologic system in a macro-tidal environment during consecutive extreme storm conditions. Ocean Dyn. 61, 2073–2098 (2011). https://doi.org/10.1007/s10236-011-0472-x

    Article  Google Scholar 

  44. Paprotny, D., Andrzejewski, P., Terefenko, P., Furmańczyk, K.: Application of empirical wave run-up formulas to the Polish Baltic Sea coast. PLoS ONE 9, 1–8 (2014). https://doi.org/10.1371/journal.pone.0105437

    Article  Google Scholar 

  45. Poate, T.G., McCall, R.T., Masselink, G.: A new parameterisation for runup on gravel beaches. Coast. Eng. 117, 176–190 (2016). https://doi.org/10.1016/j.coastaleng.2016.08.003

    Article  Google Scholar 

  46. Di Luccio, D., Benassai, G., Budillon, G., Mucerino, L., Montella, R., Pugliese Carratelli, E.: Wave run-up prediction and observation in a micro-tidal beach. Nat. Hazards Earth Syst. Sci. 18, 2841–2857 (2018). https://doi.org/10.5194/nhess-18-2841-2018

    Article  Google Scholar 

  47. Valentini, N., Saponieri, A., Danisi, A., Pratola, L., Damiani, L.: Exploiting remote imagery in an embayed sandy beach for the validation of a runup model framework. Estuar. Coast. Shelf Sci. 225, 106244 (2019). https://doi.org/10.1016/j.ecss.2019.106244

    Article  Google Scholar 

  48. Didier, D., Caulet, C., Bandet, M., Bernatchez, P., Dumont, D., Augereau, E., Floc’h, F., Delacourt, C.: Wave runup parameterization for sandy, gravel and platform beaches in a fetch-limited, large estuarine system. Cont. Shelf Res. 192, 104024 (2020). https://doi.org/10.1016/j.csr.2019.104024

  49. Vousdoukas, M.I., Ferreira, P.M., Almeida, L.P., Dodet, G., Psaros, F., Andriolo, U., Taborda, R., Silva, A.N., Ruano, A., Ferreira, Ó.M.: Performance of intertidal topography video monitoring of a meso-tidal reflective beach in South Portugal. Ocean Dyn. 61, 1521–1540 (2011). https://doi.org/10.1007/s10236-011-0440-5

    Article  Google Scholar 

  50. Power, H.E., Gharabaghi, B., Bonakdari, H., Robertson, B., Atkinson, A.L., Baldock, T.E.: Prediction of wave runup on beaches using Gene-Expression Programming and empirical relationships. Coast. Eng. 144, 47–61 (2019). https://doi.org/10.1016/j.coastaleng.2018.10.006

    Article  Google Scholar 

  51. Passarella, M., Goldstein, E.B., De Muro, S., Coco, G.: The use of genetic programming to develop a predictor of swash excursion on sandy beaches. Nat. Hazards Earth Syst. Sci. 18, 599–611 (2018). https://doi.org/10.5194/nhess-18-599-2018

    Article  Google Scholar 

  52. Lee, S.-C., Choi, J.-Y., Park, K.-S., Kim, S.-S., Kim, S.-J., Jun, K.-C.: Use of optical video imagery to improve wave run-up prediction accuracy. J. Coast. Res. 85, 1271–1275 (2018). https://doi.org/10.2112/SI85-255.1

    Article  Google Scholar 

  53. González-Jorge, H., Díaz-Vilariño, L., Martínez-Sánchez, J., Riveiro, B., Arias, P.: Wave run-up monitoring on rubble-mound breakwaters using a photogrammetric methodology. J. Perform. Constr. Facil. 30, 04015075 (2016). https://doi.org/10.1061/(asce)cf.1943-5509.0000822

    Article  Google Scholar 

  54. Uunk, L., Wijnberg, K.M., Morelissen, R.: Automated mapping of the intertidal beach bathymetry from video images. Coast. Eng. 57, 461–469 (2010). https://doi.org/10.1016/j.coastaleng.2009.12.002

    Article  Google Scholar 

  55. Aarninkhof, S.G.J., Turner, I.L., Dronkers, T.D.T., Caljouw, M., Nipius, L.: A video-based technique for mapping intertidal beach bathymetry. Coast. Eng. 49, 275–289 (2003). https://doi.org/10.1016/S0378-3839(03)00064-4

    Article  Google Scholar 

  56. Valentini, N., Saponieri, A., Damiani, L.: A new video monitoring system in support of Coastal Zone Management at Apulia Region, Italy. Ocean Coast. Manag. 142, 122–135 (2017). https://doi.org/10.1016/j.ocecoaman.2017.03.032

    Article  Google Scholar 

  57. Andriolo, U., Almeida, L.P., Almar, R.: Coupling terrestrial LiDAR and video imagery to perform 3D intertidal beach topography. Coast. Eng. 140, 232–239 (2018). https://doi.org/10.1016/j.coastaleng.2018.07.009

    Article  Google Scholar 

  58. Shand, T., Bailey, D., Shand, R.: Automated detection of breaking wave height using an optical technique. J. Coast. Res. 28, 671–682 (2012). https://doi.org/10.2112/jcoastres-d-11-00105.1

    Article  Google Scholar 

  59. Gal, Y., Browne, M., Lane, C.: Long-term automated monitoring of nearshore wave height from digital video. IEEE Trans. Geosci. Remote Sens. 52, 3412–3420 (2014). https://doi.org/10.1109/TGRS.2013.2272790

    Article  Google Scholar 

  60. Andriolo, U., Mendes, D., Taborda, R.: Breaking wave height estimation from Timex images: two methods for coastal video monitoring systems. Remote Sens. 12, 204 (2020). https://doi.org/10.3390/rs12020204

    Article  Google Scholar 

  61. Almar, R., Cienfuegos, R., Catalán, P.A., Michallet, H., Castelle, B., Bonneton, P., Marieu, V.: A new breaking wave height direct estimator from video imagery. Coast. Eng. 61, 42–48 (2012). https://doi.org/10.1016/j.coastaleng.2011.12.004

    Article  Google Scholar 

  62. Mole, M.A., Mortlock, T.R.C., Turner, I.L., Goodwin, I.D., Splinter, K.D., Short, A.D.: Capitalizing on the surfcam phenomenon: a pilot study in regional-scale shoreline and inshore wave monitoring utilizing existing camera infrastructure. J. Coast. Res. 165, 1433–1438 (2013). https://doi.org/10.2112/SI65-242.1

    Article  Google Scholar 

  63. Bracs, M.A., Turner, I.L., Splinter, K.D., Short, A.D., Lane, C., Davidson, M.A., Goodwin, I.D., Pritchard, T., Cameron, D.: Evaluation of opportunistic shoreline monitoring capability utilizing existing “surfcam” infrastructure. J. Coast. Res. 319, 542–554 (2016). https://doi.org/10.2112/JCOASTRES-D-14-00090.1

    Article  Google Scholar 

  64. Almeida, L.P., Masselink, G., Russell, P.E., Davidson, M.A.: Observations of gravel beach dynamics during high energy wave conditions using a laser scanner. Geomorphology 228, 15–27 (2015). https://doi.org/10.1016/j.geomorph.2014.08.019

    Article  Google Scholar 

  65. Blenkinsopp, C.E., Matias, A., Howe, D., Castelle, B., Marieu, V., Turner, I.L.: Wave runup and overwash on a prototype-scale sand barrier. Coast. Eng. 113, 88–103 (2016). https://doi.org/10.1016/j.coastaleng.2015.08.006

    Article  Google Scholar 

  66. Hofland, B., Diamantidou, E., van Steeg, P., Meys, P.: Wave runup and wave overtopping measurements using a laser scanner. Coast. Eng. 106, 20–29 (2015). https://doi.org/10.1016/j.coastaleng.2015.09.003

    Article  Google Scholar 

  67. Brodie, K.L., Raubenheimer, B., Elgar, S., Slocum, R.K., McNinch, J.E.: Lidar and pressure measurements of inner-surfzone waves and setup. J. Atmos. Ocean. Technol. 32, 1945–1959 (2015). https://doi.org/10.1175/JTECH-D-14-00222.1

    Article  Google Scholar 

  68. Bergsma, E.W.J., Blenkinsopp, C.E., Martins, K., Almar, R., de Almeida, L.P.M.: Bore collapse and wave run-up on a sandy beach. Cont. Shelf Res. 174, 132–139 (2019). https://doi.org/10.1016/j.csr.2019.01.009

    Article  Google Scholar 

  69. Almeida, L.P., Almar, R., Blenkinsopp, C., Senechal, N., Bergsma, E., Floc’h, F., Caulet, C., Biausque, M., Marchesiello, P., Grandjean, P., Ammann, J., Benshila, R., Thuan, D.H., da Silva, P.G., Viet, N.T.: Lidar observations of the swash zone of a low-tide terraced tropical beach under variable wave conditions: the Nha Trang (Vietnam) COASTVAR experiment. J. Mar. Sci. Eng. 8, 302 (2020). https://doi.org/10.3390/JMSE8050302

  70. Fiedler, J.W., Brodie, K.L., McNinch, J.E., Guza, R.T.: Observations of runup and energy flux on a low-slope beach with high-energy, long-period ocean swell. Geophys. Res. Lett. 42, 9933–9941 (2015). https://doi.org/10.1002/2015GL066124

    Article  Google Scholar 

  71. Martins, K., Blenkinsopp, C.E., Power, H.E., Bruder, B., Puleo, J.A., Bergsma, E.W.J.: High-resolution monitoring of wave transformation in the surf zone using a LiDAR scanner array. Coast. Eng. 128, 37–43 (2017). https://doi.org/10.1016/j.coastaleng.2017.07.007

    Article  Google Scholar 

Download references

Acknowledgements

Acknowledgements are due to the Portuguese Foundation for Science and Technology (FCT) and the European Regional Development Fund (FEDER) through COMPETE 2020—Operational Program for Competitiveness and Internationalization (POCI) in the framework of UIDB/00308/2020 and the research project UAS4Litter (PTDC/EAM-REM/30324/2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diogo Mendes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mendes, D., Andriolo, U., Neves, M.G. (2023). Advances in Wave Run-Up Measurement Techniques. In: Chastre, C., Neves, J., Ribeiro, D., Neves, M.G., Faria, P. (eds) Advances on Testing and Experimentation in Civil Engineering. Springer Tracts in Civil Engineering . Springer, Cham. https://doi.org/10.1007/978-3-031-05875-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05875-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05874-5

  • Online ISBN: 978-3-031-05875-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics