Skip to main content

Robotic Training for RALP

  • Chapter
  • First Online:
Robot-Assisted Radical Prostatectomy

Abstract

The role of simulation in medicine continues to grow. Particularly for robotic surgical training, there are now a wide variety of simulators available. These range from simple bench top models used to practice basic surgical skills to complex VR models, live animals and human cadavers that can be used to finesse more advanced procedural skills. There is a large body of evidence to support their implementation and simulators are playing an increasingly central role in the surgical curriculum. Recently there has been greater recognition of the importance of non-technical skills training. Non-technical skills are critical to ensuring that surgery can be conducted safely. Especially in a complex environment such as the robotic surgical OR, focussed specialist training is essential. Simulators are also being used in the assessment of technical skills both for the purposes of training and credentialing. A variety of innovative approaches for example crowd sourcing have been developed and development of automated assessment systems is progressing rapidly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ericsson KA, Krampe RT, Tesch-Romer C. The role of deliberate practice in the acquisition of expert performance. Psychol Rev. 1993;100(3):363–406.

    Article  Google Scholar 

  2. Leung WC. Competency based medical training: review. BMJ. 2002;325(7366):693–6.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Shaughnessy AF, Torro JR, Frame KA, Bakshi M. Evidence-based medicine and life-long learning competency requirements in new residency teaching standards. Evid Based Med. 2016;21(2):46–9.

    Article  PubMed  Google Scholar 

  4. Ahmed K, Khan R, Mottrie A, Lovegrove C, Abaza R, Ahlawat R, et al. Development of a standardised training curriculum for robotic surgery: a consensus statement from an international multidisciplinary group of experts. BJU Int. 2015;116(1):93–101.

    Article  PubMed  Google Scholar 

  5. Vincent C, Neale G, Woloshynowych M. Adverse events in British hospitals: preliminary retrospective record review. BMJ. 2001;322(7285):517–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ericsson KA. Deliberate practice and the acquisition and maintenance of expert performance in medicine and related domains. Acad Med. 2004;79(10 Suppl):S70–81.

    Article  PubMed  Google Scholar 

  7. Sturm LP, Windsor JA, Cosman PH, Cregan P, Hewett PJ, Maddern GJ. A systematic review of skills transfer after surgical simulation training. Ann Surg. 2008;248(2):166–79.

    Article  PubMed  Google Scholar 

  8. Cook DA, Hatala R, Brydges R, Zendejas B, Szostek JH, Wang AT, et al. Technology-enhanced simulation for health professions education: a systematic review and meta-analysis. JAMA. 2011;306(9):978–88.

    Article  CAS  PubMed  Google Scholar 

  9. Grantcharov TP, Kristiansen VB, Bendix J, Bardram L, Rosenberg J, Funch-Jensen P. Randomized clinical trial of virtual reality simulation for laparoscopic skills training. Br J Surg. 2004;91(2):146–50.

    Article  CAS  PubMed  Google Scholar 

  10. Abboudi H, Khan MS, Aboumarzouk O, Guru KA, Challacombe B, Dasgupta P, et al. Current status of validation for robotic surgery simulators—a systematic review. BJU Int. 2013;111(2):194–205.

    Article  PubMed  Google Scholar 

  11. Culligan P, Gurshumov E, Lewis C, Priestley J, Komar J, Salamon C. Predictive validity of a training protocol using a robotic surgery simulator. Female Pelvic Med Reconstr Surg. 2014;20(1):48–51.

    Article  PubMed  Google Scholar 

  12. Raison N, Harrison P, Abe T, Aydin A, Ahmed K, Dasgupta P. Procedural virtual reality simulation training for robotic surgery: a randomised controlled trial. Surg Endosc. 2021;35(12):6897–902.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Goh A, Joseph R, O’Malley M, Miles B, Dunkin B. 1336 development and validation of inanimate tasks for robotic surgical skills assessment and training. J Urol. 2010;183(4S):e516.

    Article  Google Scholar 

  14. Raison N, Poulsen J, Abe T, Aydin A, Ahmed K, Dasgupta P. An evaluation of live porcine simulation training for robotic surgery. J Robot Surg. 2021;15(3):429–34.

    Article  PubMed  Google Scholar 

  15. Volpe A, Ahmed K, Dasgupta P, Ficarra V, Novara G, van der Poel H, et al. Pilot validation study of the European Association of urology robotic training curriculum. Eur Urol. 2015;68(2):292–9.

    Article  PubMed  Google Scholar 

  16. Gilbody J, Prasthofer AW, Ho K, Costa ML. The use and effectiveness of cadaveric workshops in higher surgical training: a systematic review. Ann R Coll Surg Engl. 2011;93(5):347–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Blaschko SD, Brooks HM, Dhuy SM, Charest-Shell C, Clayman RV, McDougall EM. Coordinated multiple cadaver use for minimally invasive surgical training. JSLS. 2007;11(4):403–7.

    PubMed  PubMed Central  Google Scholar 

  18. Goh AC, Goldfarb DW, Sander JC, Miles BJ, Dunkin BJ. Global evaluative assessment of robotic skills: validation of a clinical assessment tool to measure robotic surgical skills. J Urol. 2012;187(1):247–52.

    Article  PubMed  Google Scholar 

  19. Goldenberg MG, Goldenberg L, Grantcharov TP. Surgeon performance predicts early continence after robot-assisted radical prostatectomy. J Endourol. 2017;31(9):858–63.

    Article  PubMed  Google Scholar 

  20. Ghani KR, Miller DC, Linsell S, Brachulis A, Lane B, Sarle R, et al. Measuring to improve: peer and crowd-sourced assessments of technical skill with robot-assisted radical prostatectomy. Eur Urol. 2016;69(4):547–50.

    Article  PubMed  Google Scholar 

  21. Lovegrove C, Novara G, Mottrie A, Guru KA, Brown M, Challacombe B, et al. Structured and modular training pathway for robot-assisted radical prostatectomy (RARP): validation of the RARP assessment score and learning curve assessment. Eur Urol. 2016;69(3):526–35.

    Article  PubMed  Google Scholar 

  22. Raison N, Wood T, Brunckhorst O, Abe T, Ross T, Challacombe B, et al. Development and validation of a tool for non-technical skills evaluation in robotic surgery—the ICARS system. Surg Endosc. 2017;31(12):5403–10.

    Article  PubMed  Google Scholar 

  23. Schreyer J, Koch A, Herlemann A, Becker A, Schlenker B, Catchpole K, et al. RAS-NOTECHS: validity and reliability of a tool for measuring non-technical skills in robotic-assisted surgery settings. Surg Endosc. 2022;36(3):1916–26.

    Article  PubMed  Google Scholar 

  24. Chen J, Remulla D, Nguyen JH, Aastha D, Liu Y, Dasgupta P, et al. Current status of artificial intelligence applications in urology and their potential to influence clinical practice. BJU Int. 2019. https://doi.org/10.1111/bju.14852.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Raison .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raison, N., Dasgupta, P. (2022). Robotic Training for RALP. In: Ren, S., Nathan, S., Pavan, N., Gu, D., Sridhar, A., Autorino, R. (eds) Robot-Assisted Radical Prostatectomy. Springer, Cham. https://doi.org/10.1007/978-3-031-05855-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05855-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05854-7

  • Online ISBN: 978-3-031-05855-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics