Skip to main content

Predictive Models in Prostate Cancer

  • Chapter
  • First Online:
Robot-Assisted Radical Prostatectomy
  • 454 Accesses

Abstract

Background: Several preoperative tools have been developed during the last two decades to assist patients and physicians across the decision processes in the diagnosis, staging and treatment of prostate cancer (PCa). In the current chapter, we aimed to describe currently available tools predicting: (1) presence of PCa at biopsy; (2) adverse pathological features at final surgical specimen; (3) oncological outcomes after radical treatment.

Main body of the chapter: Risk calculators have been developed to estimate individual risk of PCa in men enrolled in PSA screening programs and the subsequent indication for prostate biopsy based on multiple factors. However, their use is not recommended due to suboptimal accuracy and the lack of prospective validation. The integration of predictive tools with MRI-derived parameters will allow for optimizing the indication for prostate biopsy. In patients who are candidate to radical prostatectomy, predictive models should be routinely used to assess the risk of adverse pathological features at surgical specimen. This is particularly true when considering the identification of lymph node invasion. As for biopsy indication, the introduction MRI has remarkably improved the ability to optimize the indication for lymph node dissection during radical prostatectomy. The use of preoperative risk tools assessing the risk of disease progression after treatment is also well accepted in routine clinical practice; in this context, risk stratification classes or scores are generally preferred to nomograms due to their straightforward format, which facilitates preoperative counselling and the decision-making process without compromising predictive accuracy.

Conclusion: Overall, prediction models for PCa developed during the last two decades exhibited good calibration characteristics and accuracy to predict the PCa at a screening level, adverse pathological findings at final pathology and oncological outcomes after radical treatment. In the upcoming years, the integration of the clinical tools with information derived from genomic classifiers or MRI results will substantially improve their predictive ability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mottet N, van den Bergh RCN, Briers E, et al. EAU-EANM-ESTRO-ESUR-SIOG guidelines on prostate cancer—2020 update. Part 1: Screening, diagnosis, and local treatment with curative intent. Eur Urol. 2021;79:243–62.

    Article  CAS  PubMed  Google Scholar 

  2. Preisser F, Cooperberg MR, Crook J, et al. Intermediate-risk prostate cancer: stratification and management. Eur Urol Oncol. 2020;3:270–80.

    Article  PubMed  Google Scholar 

  3. Cooperberg MR, Pasta DJ, Elkin EP, et al. The University of California, San Francisco cancer of the prostate risk assessment score: a straightforward and reliable preoperative predictor of disease recurrence after radical prostatectomy. J Urol. 2005;173:1938–42.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kattan MW, Eastham JA, Stapleton AM, Wheeler TM, Scardino PT. A preoperative nomogram for disease recurrence following radical prostatectomy for prostate cancer. J Natl Cancer Inst. 1998;90:766–71.

    Article  CAS  PubMed  Google Scholar 

  5. Bandini M, Fossati N, Briganti A. Nomograms in urologic oncology, advantages and disadvantages. Curr Opin Urol. 2019;29:42–51.

    Article  PubMed  Google Scholar 

  6. D’Amico AV, Whittington R, Bruce Malkowicz S, et al. Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. J Am Med Assoc. 1998;280:969–74.

    Article  Google Scholar 

  7. Schaeffer E, Srinivas S, Antonarakis ES, et al. NCCN guidelines insights: prostate cancer, version 1.2021. J Natl Compr Cancer Netw. 2021;19:134–43.

    Article  CAS  Google Scholar 

  8. Mazzone E, Stabile A, Pellegrino F, et al. Positive predictive value of prostate imaging reporting and data system version 2 for the detection of clinically significant prostate cancer: a systematic review and meta-analysis. Eur Urol Oncol. 2021;4(5):697–713.

    Article  PubMed  Google Scholar 

  9. Gandaglia G, Ploussard G, Valerio M, et al. Prognostic implications of multiparametric magnetic resonance imaging and concomitant systematic biopsy in predicting biochemical recurrence after radical prostatectomy in prostate cancer patients diagnosed with magnetic resonance imaging-targeted biopsy. Eur Urol Oncol. 2020;3:739–47.

    Article  PubMed  Google Scholar 

  10. Gandaglia G, Ploussard G, Valerio M, et al. A novel nomogram to identify candidates for extended pelvic lymph node dissection among patients with clinically localized prostate cancer diagnosed with magnetic resonance imaging-targeted and systematic biopsies. Eur Urol. 2019;75(3):506–14.

    Article  PubMed  Google Scholar 

  11. Gandaglia G, Ploussard G, Valerio M, et al. The key combined value of multiparametric magnetic resonance imaging, and magnetic resonance imaging–targeted and concomitant systematic biopsies for the prediction of adverse pathological features in prostate cancer patients undergoing radical prostatect. Eur Urol. 2020;77:733–41.

    Article  PubMed  Google Scholar 

  12. Partin AW, Brawer MK, Subong ENP, et al. Prospective evaluation of percent free-PSA and complexed-PSA for early detection of prostate cancer. Prostate Cancer Prostatic Dis. 1998;1:197–203.

    Article  CAS  PubMed  Google Scholar 

  13. Catalona WJ, Partin AW, Sanda MG, et al. A multicenter study of [−2]pro-prostate specific antigen combined with prostate specific antigen and free prostate specific antigen for prostate cancer detection in the 2.0 to 10.0 ng/ml prostate specific antigen range. J Urol. 2011;185:1650–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tosoian JJ, Druskin SC, Andreas D, et al. Use of the Prostate Health Index for detection of prostate cancer: results from a large academic practice. Prostate Cancer Prostatic Dis. 2017;20:228–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Giovanni L, Massimo L, Alessandro L, et al. Development and internal validation of a prostate health index based nomogram for predicting prostate cancer at extended biopsy. J Urol. 2012;188:1144–50.

    Article  Google Scholar 

  16. Tosoian JJ, Druskin SC, Andreas D, et al. Prostate Health Index density improves detection of clinically significant prostate cancer. BJU Int. 2017;120:793–8.

    Article  CAS  PubMed  Google Scholar 

  17. Gnanapragasam VJ, Burling K, George A, et al. The Prostate Health Index adds predictive value to multi-parametric MRI in detecting significant prostate cancers in a repeat biopsy population. Sci Rep. 2016;6:35364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Steyerberg EW, Roobol MJ, Kattan MW, et al. Prediction of indolent prostate cancer: validation and updating of a prognostic nomogram. J Urol. 2007;177:107–12.

    Article  CAS  PubMed  Google Scholar 

  19. Distler FA, Radtke JP, Bonekamp D, et al. The value of PSA density in combination with PI-RADS™ for the accuracy of prostate cancer prediction. J Urol. 2017;198:575–82.

    Article  PubMed  Google Scholar 

  20. Bjurlin MA, Rosenkrantz AB, Sarkar S, et al. Prediction of prostate cancer risk among men undergoing combined MRI-targeted and systematic biopsy using novel pre-biopsy nomograms that incorporate MRI findings. Urology. 2018;112:112–20.

    Article  PubMed  Google Scholar 

  21. Lai WS, Gordetsky JB, Thomas JV, Nix JW, Rais-Bahrami S. Factors predicting prostate cancer upgrading on magnetic resonance imaging-targeted biopsy in an active surveillance population. Cancer. 2017;123:1941–8.

    Article  CAS  PubMed  Google Scholar 

  22. Lebacle C, Roudot-Thoraval F, Moktefi A, et al. Integration of MRI to clinical nomogram for predicting pathological stage before radical prostatectomy. World J Urol. 2017;35:1409–15.

    Article  PubMed  Google Scholar 

  23. Radtke JP, Wiesenfarth M, Kesch C, et al. Combined clinical parameters and multiparametric magnetic resonance imaging for advanced risk modeling of prostate cancer—patient-tailored risk stratification can reduce unnecessary biopsies. Eur Urol. 2017;72:888–96.

    Article  PubMed  Google Scholar 

  24. Reisæter LAR, Fütterer JJ, Losnegård A, et al. Optimising preoperative risk stratification tools for prostate cancer using mpMRI. Eur Radiol. 2018;28:1016–26.

    Article  PubMed  Google Scholar 

  25. van Leeuwen PJ, Hayen A, Thompson JE, et al. A multiparametric magnetic resonance imaging-based risk model to determine the risk of significant prostate cancer prior to biopsy. BJU Int. 2017;120:774–81.

    Article  PubMed  Google Scholar 

  26. Bjurlin MA, Renson A, Rais-Bahrami S, et al. Predicting benign prostate pathology on magnetic resonance imaging/ultrasound fusion biopsy in men with a prior negative 12-core systematic biopsy: external validation of a prognostic nomogram. Eur Urol Focus. 2019;5:815–22.

    Article  PubMed  Google Scholar 

  27. Truong M, Wang B, Gordetsky JB, et al. Multi-institutional nomogram predicting benign prostate pathology on magnetic resonance/ultrasound fusion biopsy in men with a prior negative 12-core systematic biopsy. Cancer. 2018;124:278–85.

    Article  PubMed  Google Scholar 

  28. Bandini M, Marchioni M, Preisser F, et al. A head-to-head comparison of four prognostic models for prediction of lymph node invasion in African American and Caucasian individuals. Eur Urol Focus. 2019;5:449–56.

    Article  PubMed  Google Scholar 

  29. Eifler JB, Feng Z, Lin BM. An updated prostate cancer staging nomogram (Partin tables) based on cases from 2006 to 2011. BJU Int. 2013;111:22.

    Article  PubMed  Google Scholar 

  30. Cagiannos I, Karakiewicz P, Eastham JA, et al. A preoperative nomogram identifying decreased risk of positive pelvic lymph nodes in patients with prostate cancer. J Urol. 2003;170:1798–803.

    Article  PubMed  Google Scholar 

  31. Godoy G, Chong KT, Cronin A, et al. Extent of pelvic lymph node dissection and the impact of standard template dissection on nomogram prediction of lymph node involvement. Eur Urol. 2011;60:195–201.

    Article  PubMed  Google Scholar 

  32. Gandaglia G, Fossati N, Zaffuto E, et al. Development and internal validation of a novel model to identify the candidates for extended pelvic lymph node dissection in prostate cancer. Eur Urol. 2017;72:632–40.

    Article  PubMed  Google Scholar 

  33. Briganti A, Larcher A, Abdollah F, et al. Updated nomogram predicting lymph node invasion in patients with prostate cancer undergoing extended pelvic lymph node dissection: the essential importance of percentage of positive cores. Eur Urol. 2012;61:480–7.

    Article  PubMed  Google Scholar 

  34. Grivas N, Wit E, Tillier C, et al. Validation and head-to-head comparison of three nomograms predicting probability of lymph node invasion of prostate cancer in patients undergoing extended and/or sentinel lymph node dissection. Eur J Nucl Med Mol Imaging. 2017;44:2213–26.

    Article  PubMed  Google Scholar 

  35. Hansen J, Rink M, Bianchi M, et al. External validation of the updated Briganti nomogram to predict lymph node invasion in prostate cancer patients undergoing extended lymph node dissection. Prostate. 2013;73:211–8.

    Article  PubMed  Google Scholar 

  36. Walz J, Bladou F, Rousseau B, et al. Head to head comparison of nomograms predicting probability of lymph node invasion of prostate cancer in patients undergoing extended pelvic lymph node dissection. Urology. 2012;79:546–51.

    Article  PubMed  Google Scholar 

  37. Bandini M, Marchioni M, Pompe RS, et al. First North American validation and head-to-head comparison of four preoperative nomograms for prediction of lymph node invasion before radical prostatectomy. BJU Int. 2018;121:592–9.

    Article  PubMed  Google Scholar 

  38. Abdollah F, Schmitges J, Sun M, et al. Head-to-head comparison of three commonly used preoperative tools for prediction of lymph node invasion at radical prostatectomy. Urology. 2011;78:1363–7.

    Article  PubMed  Google Scholar 

  39. Gandaglia G, Martini A, Ploussard G, et al. External validation of the 2019 Briganti nomogram for the identification of prostate cancer patients who should be considered for an extended pelvic lymph node dissection. Eur Urol. 2020;78:138–42.

    Article  PubMed  Google Scholar 

  40. Porpiglia F, Manfredi M, Mele F, et al. Indication to pelvic lymph nodes dissection for prostate cancer: the role of multiparametric magnetic resonance imaging when the risk of lymph nodes invasion according to Briganti updated nomogram is <5. Prostate Cancer Prostatic Dis. 2018;21:85–91.

    Article  PubMed  Google Scholar 

  41. Briganti A, Joniau S, Gontero P, et al. Identifying the best candidate for radical prostatectomy among patients with high-risk prostate cancer. Eur Urol. 2012;61:584–92.

    Article  PubMed  Google Scholar 

  42. Jansen BHE, Nieuwenhuijzen JA, Oprea-Lager DE, et al. Adding multiparametric MRI to the MSKCC and Partin nomograms for primary prostate cancer: improving local tumor staging? Urol Oncol. 2019;37:181.e1–6.

    Article  PubMed  Google Scholar 

  43. Rayn KN, Bloom JB, Gold SA, et al. Added value of multiparametric magnetic resonance imaging to clinical nomograms for predicting adverse pathology in prostate cancer. J Urol. 2018;200:1041–7.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Weaver JK, Kim EH, Vetter JM, et al. Prostate magnetic resonance imaging provides limited incremental value over the memorial sloan kettering cancer center preradical prostatectomy nomogram. Urology. 2018;113:119–28.

    Article  PubMed  Google Scholar 

  45. Martini A, Gupta A, Lewis SC, et al. Development and internal validation of a side-specific, multiparametric magnetic resonance imaging-based nomogram for the prediction of extracapsular extension of prostate cancer. BJU Int. 2018;122:1025–33.

    Article  CAS  PubMed  Google Scholar 

  46. Nyarangi-Dix J, Wiesenfarth M, Bonekamp D, et al. Combined clinical parameters and multiparametric magnetic resonance imaging for the prediction of extraprostatic disease—a risk model for patient-tailored risk stratification when planning radical prostatectomy. Eur Urol Focus. 2020;6:1205–12.

    Article  PubMed  Google Scholar 

  47. Lantz A, Falagario UG, Ratnani P, et al. Expanding active surveillance inclusion criteria: a novel nomogram including preoperative clinical parameters and magnetic resonance imaging findings. Eur Urol Oncol. 2020;5:187–94. https://doi.org/10.1016/j.euo.2020.08.001.

    Article  PubMed  Google Scholar 

  48. Soeterik TFW, van Melick HHE, Dijksman LM, et al. Development and external validation of a novel nomogram to predict side-specific extraprostatic extension in patients with prostate cancer undergoing radical prostatectomy. Eur Urol Oncol. 2020. https://doi.org/10.1016/j.euo.2020.08.008.

  49. Eastham JA, Scardino PT, Kattan MW. Predicting an optimal outcome after radical prostatectomy: the trifecta nomogram. J Urol. 2008;179:2201–7.

    Article  Google Scholar 

  50. Stephenson AJ, Scardino PT, Eastham JA, et al. Postoperative nomogram predicting the 10-year probability of prostate cancer recurrence after radical prostatectomy. J Clin Oncol. 2005;23:7005–12.

    Article  PubMed  Google Scholar 

  51. Cooperberg MR, Hilton JF, Carroll PR. The CAPRA-S score: a straightforward tool for improved prediction of outcomes after radical prostatectomy. Cancer. 2011;117:5039–46.

    Article  PubMed  Google Scholar 

  52. Mitchell JA, Cooperberg MR, Elkin EP, et al. Ability of 2 pretreatment risk assessment methods to predict prostate cancer recurrence after radical prostatectomy: data from CaPSURE. J Urol. 2005;173:1126–31.

    Article  PubMed  Google Scholar 

  53. Cooperberg MR, Davicioni E, Crisan A, et al. Combined value of validated clinical and genomic risk stratification tools for predicting prostate cancer mortality in a high-risk prostatectomy cohort. Eur Urol. 2015;67:326–33.

    Article  PubMed  Google Scholar 

  54. Den RB, Yousefi K, Trabulsi EJ, et al. Genomic classifier identifies men with adverse pathology after radical prostatectomy who benefit from adjuvant radiation therapy. J Clin Oncol. 2015;33:944–51.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Feng FY, Huang H-C, Spratt DE, et al. Validation of a 22-gene genomic classifier in patients with recurrent prostate cancer: an ancillary study of the NRG/RTOG 9601 randomized clinical trial. JAMA Oncol. 2021;7:544–52.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Nguyen PL, Haddad Z, Ross AE, et al. Ability of a genomic classifier to predict metastasis and prostate cancer-specific mortality after radiation or surgery based on needle biopsy specimens. Eur Urol. 2017;72:845–52.

    Article  PubMed  Google Scholar 

  57. Van Den Eeden SK, Lu R, Zhang N, et al. A biopsy-based 17-gene genomic prostate score as a predictor of metastases and prostate cancer death in surgically treated men with clinically localized disease. Eur Urol. 2018;73:129–38.

    Article  PubMed  Google Scholar 

  58. Dalela D, Santiago-Jiménez M, Yousefi K, et al. Genomic classifier augments the role of pathological features in identifying optimal candidates for adjuvant radiation therapy in patients with prostate cancer: development and internal validation of a multivariable prognostic model. J Clin Oncol. 2017;35:1982–90.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Erho N, Crisan A, Vergara IA, et al. Discovery and validation of a prostate cancer genomic classifier that predicts early metastasis following radical prostatectomy. PLoS One. 2013;8:e66855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lalonde E, Alkallas R, Chua MLK, et al. Translating a prognostic DNA genomic classifier into the clinic: retrospective validation in 563 localized prostate tumors. Eur Urol. 2017;72:22–31.

    Article  CAS  PubMed  Google Scholar 

  61. Stephenson AJ, Scardino PT, Kattan MW, et al. Predicting the outcome of salvage radiation therapy for recurrent prostate cancer after radical prostatectomy. J Clin Oncol. 2007;25:2035–41.

    Article  PubMed  Google Scholar 

  62. Tendulkar RD, Agrawal S, Gao T, et al. Contemporary update of a multi-institutional predictive nomogram for salvage radiotherapy after radical prostatectomy. J Clin Oncol. 2016;34:3648–54.

    Article  PubMed  Google Scholar 

  63. Briganti A, Karnes RJ, Joniau S, et al. Prediction of outcome following early salvage radiotherapy among patients with biochemical recurrence after radical prostatectomy. Eur Urol. 2014;66:479–86.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Disclosure: The authors declare no conflict of interest.

Formatting of Funding Sources

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Financial Disclosures

Elio Mazzone certifies that all conflicts of interest, including specific financial interests and relationships and affiliations relevant to the subject matter or materials discussed in the manuscript (e.g., employment/affiliation, grants or funding, consultancies, honoraria, stock ownership or options, expert testimony, royalties, or patents filed, received, or pending), are the following: None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elio Mazzone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mazzone, E., Gandaglia, G., Cucchiara, V., Briganti, A. (2022). Predictive Models in Prostate Cancer. In: Ren, S., Nathan, S., Pavan, N., Gu, D., Sridhar, A., Autorino, R. (eds) Robot-Assisted Radical Prostatectomy. Springer, Cham. https://doi.org/10.1007/978-3-031-05855-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05855-4_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05854-7

  • Online ISBN: 978-3-031-05855-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics