Skip to main content

Ex Vivo Fluorescence Confocal Microscopy

  • Chapter
  • First Online:
Robot-Assisted Radical Prostatectomy

Abstract

Fluorescence Confocal Microscopy (FCM) is an imaging technique able to generate digital images from fresh tissue in real time, without the need for traditional processing. FCM’s capacity to discriminate prostate tissue on bioptic cores in real time was investigated in two prospective clinical trials. In this chapter we are presenting the updated data about the use of FCM applied to robotic prostatectomy in patients with prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bertoni L, Puliatti S, Reggiani Bonetti L, Maiorana A, Eissa A, Azzoni P, Bevilacqua L, Spandri V, Kaleci S, Zoeir A, Sighinolfi MC, Micali S, Bianchi G, Pellacani G, Rocco B, Montironi R. Ex vivo fluorescence confocal microscopy: prostatic and periprostatic tissues atlas and evaluation of the learning curve. Virchows Arch. 2020;476(4):511–20. https://doi.org/10.1007/s00428-019-02738-y.

    Article  CAS  PubMed  Google Scholar 

  2. Paddock SW, Eliceiri KW. Laser scanning confocal microscopy: history, applications, and related optical sectioning techniques. Methods Mol Biol. 2014;1075:9–47. https://doi.org/10.1007/978-1-60761-847-8_2.

    Article  PubMed  Google Scholar 

  3. Longo C, Pampena R, Bombonato C, et al. Diagnostic accuracy of ex vivo fluorescence confocal microscopy in Mohs surgery of basal cell carcinomas: a prospective study on 753 margins. Br J Dermatol. 2019;180:1473–80.

    Article  CAS  PubMed  Google Scholar 

  4. Bertoni L, Azzoni P, Reggiani C, et al. Ex vivo fluoresccence confocal microscopy for intra-operative real-time diagnosis of cutaneous inflammatory diseases: a preliminary study. Exp Dermatol. 2018;27:1152–9.

    Article  CAS  PubMed  Google Scholar 

  5. Reggiani C, Pellacani G, Reggiani Bonetti L, et al. An intraoperative study with ex vivo fluorescence confocal microscopy: diagnostic accuracy of the 3 visualization modalities. J Eur Acad Dermatol Venereaol. 2020;35(1):e92–4. https://doi.org/10.1111/jdv.16831.

    Article  Google Scholar 

  6. Krishnamurthy S, Sabir S, Ban K, et al. Comparison of real-time fluorescence confocal microscopy with hematoxylin eosin stained sections of core-needle biopsy specimens. JAMA Net Open. 2020;3:e200476.

    Article  Google Scholar 

  7. Mir MC, Bancalari B, Calatrava A, Casanova J, Dominguez Escrig JL, Ramirez-Backhaus M, Gomez-Ferrer A, Collado A, Wong A, Iborra I, Sanmarti O, Rubio-Briones J. Ex-vivo confocal fluorescence microscopy for rapid evaluation of renal core biopsy. Minerva Urol Nefrol. 2020;72(1):109–13. Epub 2019 Dec 12. PMID: 31833726. https://doi.org/10.23736/S0393-2249.19.03627-0.

    Article  PubMed  Google Scholar 

  8. Minsky M. Memoir on inventing the confocal scanning microscope. Scanning. 1988;10:128–38.

    Article  Google Scholar 

  9. Pawley JB. Handbook of biological confocal microscopy. 3rd ed. NY: Plenum Press; 2006.

    Book  Google Scholar 

  10. Amos WB, White JG. How the confocal laser scanning microscope entered biological research. Biol Cell. 2003;95:335–42.

    Article  CAS  PubMed  Google Scholar 

  11. MAVIG. Datasheet VivaScope® 2500M-G4. 2018. https://www.vivascope.de/wp-content/uploads/2019/06/DS_VS-2500M-G4_ 287_0219-ohne-Mohs.pdf. Accessed 4 Jan 2020.

  12. Puliatti S, Bertoni L, Pirola GM, Azzoni P, Bevilacqua L, Eissa A, Elsherbiny A, Sighinolfi MC, Chester J, Kaleci S, Rocco B, Micali S, Bagni I, Bonetti LR, Maiorana A, Malvehy J, Longo C, Montironi R, Bianchi G, Pellacani G. Ex vivo fluorescence confocal microscopy: the first application for real-time pathological examination of prostatic tissue. BJU Int. 2019;124(3):469–76. https://doi.org/10.1111/bju.14754.

    Article  PubMed  Google Scholar 

  13. Rocco B, Sighinolfi MC, Cimadamore A, Reggiani Bonetti L, Bertoni L, Puliatti S, Eissa A, Spandri V, Azzoni P, Dinneen E, Shaw G, Nathan S, Micali S, Bianchi G, Maiorana A, Pellacani G, Montironi R. Digital frozen section of the prostate surface during radical prostatectomy: a novel approach to evaluate surgical margins. BJU Int. 2020;126(3):336–8. https://doi.org/10.1111/bju.15108.

    Article  PubMed  Google Scholar 

  14. Rocco B, Sighinolfi MC, Sandri M, et al. Digital biopsy with fluorescence confocal microscopy for effective real time diagnosis of prostate cancer: a prospective, comparative study. Eur Urol Oncol. 2021;4(5):784–91.

    Article  PubMed  Google Scholar 

  15. Rocco B, Sighinolfi MC, Bertoni L, et al. Real-time assessment of surgical margins during radical prostatectomy: a novel approach that uses fluorescence confocal microscopy for the evaluation of peri-prostatic soft tissue. GBJU Int. 2020;125(4):487–9.

    Google Scholar 

  16. Cicione A, De Nunzio C, Manno S, et al. An update on prostate biopsy in the era of magnetic resonance imaging. Minerva Urol Nephrol. 2018;70:264–74.

    Article  Google Scholar 

  17. Mottet N, Cornford P, van der Bergh RCN et al. EAU-EANM-ESTRO-ESUR-ISUP-SIOG guidelines on prostate cancer. 2019 edn.

    Google Scholar 

  18. Alshieban S, Al-Surimi K. Reducing turnaround time of surgical pathology reports in pathology and laboratory medicine departments. BMJ Qual Improv Rep. 2015;4(1):u209223.w3773.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Marenco J, Calatrava A, Casanova J, et al. Evaluation of fluorescent confocal microscopy for intraoperative analysis of prostate biopsy core. Eur Urol Focus. 2021;7(6):1254–9.

    Article  PubMed  Google Scholar 

  20. Walsh PC, Donker PJ. Impotence following radical prostatectomy: insight into etiology and prevention. J Urol. 1982;128:492–7.

    Article  CAS  PubMed  Google Scholar 

  21. Mauermann J, Fradet V, Lacombe L, et al. The impact of solitary and multiple positive surgical margins on hard clinical end points in 1712 adjuvant treatment-naive pT2-4 N0 radical prostatectomy patients. Eur Urol. 2013;64:19–25.

    Article  PubMed  Google Scholar 

  22. Yossepowitch O, Briganti A, Eastham JA, et al. Positive surgical margins after radical prostatectomy: a systematic review and contemporary update. Eur Urol. 2014;65:303–13.

    Article  PubMed  Google Scholar 

  23. Lopez A, Zlatev DV, Mach KE, et al. Intraoperative optical biopsy during robotic assisted radical prostatectomy using confocal endomicroscopy. J Urol. 2016;195:1110–7.

    Article  PubMed  Google Scholar 

  24. Boyette LB, Reardon MA, Mirelman AJ, et al. Fiberoptic imaging of cavernous nerves in vivo. J Urol. 2007;178:2694–700.

    Article  PubMed  Google Scholar 

  25. Jaudlim A, Aydin A, Hebrain F, et al. Imaging modalities aiding nerve sparing during radical prostatectomy. Turk J Urol. 2019;45:325–30.

    Article  Google Scholar 

  26. Sighinolfi MC, Rocco B. Re: EAU guidelines: prostate cancer 2019. Eur Urol. 2019;76(6):871.

    Article  PubMed  Google Scholar 

  27. Dinneen EP, Van Der Slot M, Adasonla K, et al. Intraoperative frozen section for margin evaluation during radical prostatectomy: a systematic review. Eur Urol Focus. 2020;6(4):664–73.

    Article  PubMed  Google Scholar 

  28. Schlomm T, Tennstedt P, Huxhold C, et al. Neurovascular structure-adjacent frozen-section examination (NeuroSAFE) increases nerve-sparing frequency and reduces positive surgical margins in open and robot-assisted laparoscopic radical prostatectomy: experience after 11,069 consecutive patients. Eur Urol. 2012;62(2):333–40.

    Article  PubMed  Google Scholar 

  29. Oxley J, Bray A, Rowe E. Could a Mohs technique make NeuroSAFE a viable option? BJU Int. 2018;122(3):358–9.

    Article  PubMed  Google Scholar 

  30. Sighinolfi MC, Rocco B. Reply to Alessia Cimadamore, Marina Scarpelli, Liang Cheng, et al.’s Letter to the Editor, re: Maria Chiara Sighinolfi, Bernardo Rocco’s words of wisdom, re: EAU guidelines: prostate cancer 2019. Mottet N, van den Bergh RCN, Briers E, et al. https://uroweb.org/guideline/prostate-Cancer/. Eur Urol. 2019;76:871. Eur Urol. 2020;77(5):e128–9.

  31. Rocco B, Sarchi L, Assumma S, et al. Digital frozen sections with fluorescence confocal microscopy during robot-assisted radical prostatectomy: surgical technique. Eur Urol. 2021;80(6):724–9. https://doi.org/10.1016/j.eururo.2021.03.021.

    Article  CAS  PubMed  Google Scholar 

  32. Metter DM, Colgan TJ, Leung ST, et al. Trends in the US and Canadian pathologist workforces from 2007 to 2017. JAMA Netw Open. 2019;2:e194337.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bulten W, Pinckaers H, van Boven H, et al. Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study. Lancet Oncol. 2020;21:233–41.

    Article  PubMed  Google Scholar 

  34. Ström P, Kartasalo K, Olsson H, et al. Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-based, diagnostic study. Lancet Oncol. 2020;21:222–32.

    Article  PubMed  Google Scholar 

  35. Nir G, Karimi D, Goldenberg SL, et al. Comparison of artificial intelligence techniques to evaluate performance of a classifier for automatic grading of prostate cancer from digitized histopathologic images. JAMA Netw Open. 2019;2:e190442.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chen PHC, Gadepalli K, MacDonald R, et al. An augmented reality microscope with real-time artificial intelligence integration for cancer diagnosis. Nat Med. 2019;25:1453–7.

    Article  CAS  PubMed  Google Scholar 

  37. Huang EY, Knight S, Guetter CR, et al. Telemedicine and telementoring in the surgical specialties: a narrative review. Am J Surg. 2019;218:760–6.

    Article  PubMed  Google Scholar 

  38. Montironi R, Cheng L, Cimadamore A, et al. Uropathologists during the COVID-19 pandemic: what can be learned in terms of social interaction, visibility, and social distance. Eur Urol. 2020;78(3):478–81. Epub 2020 May 11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cimadamore A, Lopez-Beltran A, Scarpelli M, et al. Digital pathology and COVID-19 and future crises: pathologists can safely diagnose cases from home using a consumer monitor and a mini PC. J Clin Pathol. 2020;73(11):695–6.

    Article  CAS  PubMed  Google Scholar 

  40. Comperat E. What does COVID-19 mean for the urology-pathology interaction? Eur Urol. 2020;78(1):e43–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang W, Xu Y, Gao R, et al. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA. 2020;323(18):1843–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Gerston KF, Blumberg L, Tshabalala VA, Murray J. Viability of mycobacteria in formalin-fixed lungs. Hum Pathol. 2004;35:571–5.

    Article  CAS  PubMed  Google Scholar 

  43. Badia JM, Rubio-Pérez I, Arias Díaz J, et al. Protocolo de actuación quirúrgica en casos confirmados o sospechosos de enfermedad por Ébola y otras enfermedades víricas altamente transmisibles. Cir Esp. 2016;94:11–5.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rocco, B. et al. (2022). Ex Vivo Fluorescence Confocal Microscopy. In: Ren, S., Nathan, S., Pavan, N., Gu, D., Sridhar, A., Autorino, R. (eds) Robot-Assisted Radical Prostatectomy. Springer, Cham. https://doi.org/10.1007/978-3-031-05855-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05855-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05854-7

  • Online ISBN: 978-3-031-05855-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics