Skip to main content

Biochemical Conversion of Lignin

  • Chapter
  • First Online:
Book cover Biomass Utilization: Conversion Strategies
  • 299 Accesses

Abstract

Lignin is one of the three major components of lignocellulosic biomass. It is highly resistant to either chemical or biochemical degradation due to the presence of the ether and C–C linkages in its heterogeneous structure. In the early attempts to develop processes for the bioconversion of biomass to fuels and chemicals, lignin was considered as a waste by-product and burned to supply heat for internal uses. Recently, it has been realized that in order to make a biorefinery economically feasible, lignin must also be used as a feedstock for the production of high-value products, in addition to cellulose and hemicellulose. Processes for the bioconversion of lignin subsequently were developed. A typical lignin bioconversion process consists of three steps, which include depolymerization, funneling, and product formation. In the first step, depolymerizing enzymes are used to break down lignin to its monomer and oligomer units. These monomers and oligomers then are converted to metabolic intermediates by a process normally referred to as funneling. Finally, the intermediates, which can enter the central metabolism, are converted to the desired products by various microbial species in fermentation processes. This chapter discusses the recent developments in the bioconversion of lignin and the potential commercial products that can be made. The future research directions that are needed to develop a complete biorefinery, which includes a component for lignin bioconversion to high-value products, are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Hamid et al (2013) Insights into lignin degradation and its potential industrial applications. Adv Appl Microbiol 82:1–27

    Article  CAS  PubMed  Google Scholar 

  • Almqvist H et al (2021) Muconic acid production using engineered Pseudomonas putida KT2440 and a guaiacol-rich fraction derived from Kraft lignin. ACS Sustain Chem Eng 9:8097–8106

    Article  CAS  Google Scholar 

  • Arregui L et al (2019) Laccases: structure, function, and potential application in water bioremediation. Microb Cell Fact 18:200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arreola-Vargas J et al (2021) Enhanced medium chain length polyhydroxyalkanoate production by co-fermentation of lignin and holocellulose hydrolysates. Green Chem 23:8226–8237

    Article  CAS  Google Scholar 

  • Atiwesh G et al (2021) Lignin degradation by microorganisms: a review. Biotechnol Prog 1:e3226. https://doi.org/10.1002/btpr.3226

  • Becker J et al (2018) Metabolic engineering of Corynebacterium glutamicum for the production of cis, cis-muconic acid from lignin. Microb Cell Fact 17:115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bourbonnais R, Paice MG, Freiermuth B, Bodie E, Borneman S (1997) Reactivities of various mediators and laccases with kraft pulp and lignin model compounds. Appl Environ Microbiol 63:4627–4632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bugg TDH, Ahmad M, Hardiman EM, Rahman Rahmanpour R (2011) Pathways for degradation of lignin in bacteria and fungi. Nat Prod Rep 28:1883–1896

    Article  CAS  PubMed  Google Scholar 

  • Capanema EA, Balakshin M (2015) Plantrose® lignins: a new type of technical lignins. Proceedings of the 18th international symposium on wood, fiber and pulping chemistry, Vienna, Austria, September 09–11th, 2015. Available on-line. https://www.researchgate.net/publication/305222916_Plantrose_lignins_a_new_type_of_technical_lignins. Accessed 16 January 2022

  • Capanema EA, Balakshin M (2016) High purity lignin, lignin compositions, and higher structured lignin. European Patent EP2970595A1; published 01-20-2016

    Google Scholar 

  • Chauhan PS (2020) Role of various bacterial enzymes in complete depolymerization of lignin: a review. Biocatal Agric Biotechnol 23:101498

    Article  Google Scholar 

  • Christopher LP, Yao B, Ji Y (2014) Lignin biodegradation with laccase-mediator systems. Front Energy Res 2, Article 12. https://doi.org/10.3389/fenrg.2014.00012

  • Converti A et al (2010) Microbial production of biovanillin. Braz J Microbiol 41:519–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Gonzalo G et al (2016) Bacterial enzymes involved in lignin degradation. J Biotechnol 236:110–119

    Article  PubMed  CAS  Google Scholar 

  • Fache M, Boutevin B, Caillon S (2015) Vanillin, a key-intermediate of biobased polymers. Eur Polymer J 68:488–502

    Article  CAS  Google Scholar 

  • Falade AO et al (2017) Lignin peroxidase functionalities and prospective applications. MicrobiologyOpen. 6:e00394

    Article  CAS  Google Scholar 

  • Fleige C, Meyer F, Steinbüchel A (2016) Metabolic engineering of the actinomycete Amycolatopsis sp. strain ATCC 39116 towards enhanced production of natural vanillin. Appl Environ Microbiol 82:3410–3419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan ZB, Liao Q, Wang HR, Chen Y, Liao XR (2018) Bacterial laccases: promising biological green tools for industrial applications. Cell Mol Life Sci 75(3569–3592):106

    Google Scholar 

  • Hardwood CS, Parales RE (1996) The beta-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol 50:553–590

    Article  Google Scholar 

  • He Y et al (2017) Lipid production from dilute alkali corn stover lignin by Rhodococcus strains. ACS Sustain Chem Eng 5:2302–2311

    Article  CAS  Google Scholar 

  • Hofrichter M (2002) Review: lignin conversion by manganese peroxidase (MnP). Enzyme Microb Technol 30:454–466

    Article  CAS  Google Scholar 

  • Hua D et al (2007) Enhanced vanillin production from ferulic acid using adsorbent resin. Appl Microbiol Biotechnol 74:783–790

    Article  CAS  PubMed  Google Scholar 

  • Huijgen WJJ et al (2014) Characteristics of wheat straw lignins from ethanol-based organosolv treatment. Ind Crops Prod 59:85–95

    Article  CAS  Google Scholar 

  • Iram A, Berenjian A, Demirci A (2021) A review on the utilization of lignin as a fermentation substrate to produce lignin-modifying enzymes and other value-added products. Molecules 26:2960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson CW, Beckham GT (2015) Aromatic catabolic pathway selection for optimal production of pyruvate and lactate from lignin. Metab Eng 28:240–247

    Article  CAS  PubMed  Google Scholar 

  • Kohlstedt M et al (2018) From lignin to nylon: Cascaded chemical and biochemical conversion using metabolically engineered Pseudomonas putida. Metab Eng 47:279–293

    Article  CAS  PubMed  Google Scholar 

  • Kumar P et al (2019) Bioconversion of lignin and its derivatives into polyhydroxyalkanoates: Challenges and opportunities. Biotechnol Appl Biochem 66:153–162

    Article  CAS  PubMed  Google Scholar 

  • Kamimura N et al (2019) Advances in microbial lignin degradation and its applications. Curr Opin Biotechnol 56:179–186

    Google Scholar 

  • Le R et al (2017) Conversion of corn stover alkaline pre-treatment waste streams into biodiesel via Rhodococci. RSC Adv 7:4108

    Article  CAS  Google Scholar 

  • Lee S et al (2019) Bacterial valorization of lignin: strains, enzymes, conversion pathways, biosensors, and perspectives. Front Bioeng Biotechnol 7: Article 209. https://doi.org/10.3389/fbioe.2019.00209

  • Lehto J, Pakkanen H, Alén R (2015) Characterization of lignin dissolved during alkaline pretreatment of softwood and hardwood. J Wood Chem Technol 35:337–347

    Article  CAS  Google Scholar 

  • Li M, Pu Y, Ragaukas AJ (2016) Current understanding of the correlation of lignin structure with biomass recalcitrance. Front Chem 4:45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li M (2019) Adding value to lignocellulosic biorefinery: Efficient process development of lignocellulosic biomass conversion into polyhydroxybutyrate. PhD dissertation, University of Nebraska-Lincoln

    Google Scholar 

  • Li X, Zheng Y (2020) Biotransformation of lignin: mechanisms, applications and future work. Biotechnol Prog 36:e2922

    CAS  PubMed  Google Scholar 

  • Liu Z-H et al (2018) Combinatorial pretreatment and fermentation optimization enabled a record yield on lignin bioconversion. Biotechnol Biofuels 11:21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu Z-H et al (2019) Cooperative valorization of lignin and residual sugar to polyhydroxyalkanoate (PHA) for enhanced yield and carbon utilization in biorefineries. Sustain Energy Fuels 3:2024

    Article  CAS  Google Scholar 

  • Liu Z-H et al (2021) Transforming biorefinery designs with ‘Plug-In Processes of Lignin’ to enable economic waste valorization. Nat Commun 12:3912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu F, Ralph J (1997) The DFRC method for lignin analysis. Part 1. A new method for β-aryl ether cleavage: lignin model studies. J Agr Food Chem 45:4655–4660

    Article  CAS  Google Scholar 

  • Luziatelli F et al (2019) Maximizing the efficiency of vanillin production by biocatalyst enhancement and process optimization. Front Bioeng Biotechnol 7: Article 279

    Google Scholar 

  • Mansfield SD et al (2012) Whole plant cell wall characterization using soluble-state 2D NMR. Nat Protoc 7(9):1579–1589

    Article  CAS  PubMed  Google Scholar 

  • Martinez AT, Speranza M, Ruiz-Dueñas FJ, Ferreira P, Camarero S, Guillen F, Martinez MJ, Gutierrez A et al (2005) Biodegradation of lignocellulosics: microbial, chemical and enzymatic aspects of the fungal attack of lignin. Int Microbiology 8:195–204

    CAS  Google Scholar 

  • Narron RH et al (2016) Biomass pretreatments capable of enabling lignin valorization in a biorefinery process. Curr Opin Biotechnol 38:39–46

    Article  CAS  PubMed  Google Scholar 

  • Perez JM et al (2019) Funneling aromatic products of chemically depolymerized lignin into 2-pyrone-4-6- dicarboxylic acid with Novosphingobium aromaticivorans. Green Chem 21:1340

    Article  CAS  Google Scholar 

  • Ramirez-Morales JE et al (2021) Lignin romatics to PHA polymers: nitrogen and oxygen are the key factors for Pseudomonas. ACS Sustain Chem Eng 9:10579–10590

    Article  CAS  Google Scholar 

  • Ravichandran A, Sridhar M (2016) Versatile peroxidases: super peroxidases with potential biotechnological applications-a mini review. J Dairy Vet Anim Res 4(2):00116

    Google Scholar 

  • Rinaldi R et al (2016) Paving the Way for Lignin Valorisation: recent advances in bioengineering, Biorefining and catalysis. Angew Chem Int Ed 55:8164–8215

    Article  CAS  Google Scholar 

  • Rolando C, Monties B, Lapierre C (1992) Thioacidolysis in methods in lignin chemistry (eds. Dence CW, Lin SY). Springer, pp 334–349

    Google Scholar 

  • Sugano Y, Yoshida T (2021) DyP-type peroxidases: recent advances and perspectives. Int J Mol Sci 22:5556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Z, Lei P, Zhai R, Wen Z, Jin M (2019) Recent advances in lignin valorization with bacterial cultures: microorganisms, metabolic pathways, and bio-products. Biotechnol Biofuels 12:32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamura M, Hattori T, Suzuki S, Shibata D, Umezawa T (2010) Microscale alkaline nitrobenzene oxidation method for high-throughput determination of lignin aromatic components. Plant Biotechnol 27:305–310

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nhuan Phu Nghiem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nghiem, N.P. (2022). Biochemical Conversion of Lignin. In: Nghiem, N.P., Kim, T.H., Yoo, C.G. (eds) Biomass Utilization: Conversion Strategies. Springer, Cham. https://doi.org/10.1007/978-3-031-05835-6_5

Download citation

Publish with us

Policies and ethics