Skip to main content

Towards Event Log Management for Process Mining - Vision and Research Challenges

  • Conference paper
  • First Online:
Research Challenges in Information Science (RCIS 2022)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 446))

Included in the following conference series:

Abstract

Organizations act in dynamic and constantly changing business environments, as the current times unfortunately illustrate. As a consequence, business processes need to be able to constantly adapt to new realities. While the dynamic nature of business processes is hardly ever challenged, the complexity of processes and the information systems (IS) supporting them make effective business process management (BPM) a challenging task. Process mining (PM) is a maturing field of data-driven process analysis techniques that addresses this challenge. PM techniques take event logs as input to extract process-related knowledge, such as automatically discovering and visualizing process models. The popularity of PM applications is growing in both industry and academia and the integration of PM with machine learning, simulation and other complementary trends, such as Digital Twins of an Organization, is gaining significant attention. However, the success of PM is directly related to the quality of the input event logs, thus the need for high-quality event logs is evident. While a decade ago the PM manifesto already stressed the importance of high-quality event logs, stating that event data should be treated as first-class citizens, event logs are often still considered as “by-products” of an IS. Even within the PM research domain, research on event logs is mostly focused on ad-hoc preparation techniques and research on event log management is critically lacking. This paper addresses this research gap by positioning event logs as first-class citizens through the lens of an event log management framework, presenting current challenges and areas for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aalst, W.: Academic view: development of the process mining discipline. In: Reinkemeyer, L. (eds.) Process Mining in Action, pp. 181–196. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40172-6_21

  2. Aalst, W.M.P.: Extracting event data from databases to unleash process mining. In: vom Brocke, J., Schmiedel, T. (eds.) BPM – Driving Innovation in a Digital World. MP, pp. 105–128. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14430-6_8

    Chapter  Google Scholar 

  3. van der Aalst, W.M.P.: Process Mining: Data Science in Action. Springer, Cham (2016). https://doi.org/10.1007/978-3-662-49851-4

  4. van der Aalst, W., et al.: Process mining manifesto. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM 2011. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28108-2_19

    Chapter  Google Scholar 

  5. Accorsi, R., et al.: On the exploitation of process mining for security audits: the conformance checking case. In: Proceedings of the 27th Annual ACM Symposium on Applied Computing, pp. 1709–1716 (2012)

    Google Scholar 

  6. Aguirre, S., et al.: Methodological proposal for process mining projects. Int. J. Bus. Process Integr. Manag. 8(2), 102–113 (2017)

    Article  Google Scholar 

  7. Baijens, J., et al.: Establishing and theorising data analytics governance: a descriptive framework and a VSM-based view. J. Bus. Anal. 1–22 (2021)

    Google Scholar 

  8. Bose, R.P.J.C., et al.: Wanna improve process mining results ? It’s high time we consider data quality issues seriously. In: IEEE Symposium on Computational Intelligence and Data Mining (CIDM 2013), pp. 127–134 (2013)

    Google Scholar 

  9. Brockhoff, T., et al.: Process prediction with digital twins, pp. 182–187 (2021)

    Google Scholar 

  10. Calvanese, D., Kalayci, T.E., Montali, M., Tinella, S.: Ontology-based data access for extracting event logs from legacy data: the onprom tool and methodology. In: Abramowicz, W. (eds.) Business Information Systems. BIS 2017. LNBIP, vol. 288, pp. 220–236. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59336-4_16

  11. Cheng, H.J., et al.: Process mining on noisy logs - can log sanitization help to improve performance? Decis. Support Syst. 79, 138–149 (2015)

    Article  Google Scholar 

  12. van Cruchten, R.M.E., et al.: Process mining in logistics: the need for rule-based data abstraction. In: 2018 12th International Conference on Research Challenges in Information Science (RCIS), pp. 1–9 (2018)

    Google Scholar 

  13. DAMA International: Data Management. In: DAMA-DMBOK Data Management Body of Knowledge, 2nd edn. Technics Publications (2017)

    Google Scholar 

  14. Dijkman, R., Gao, J., Syamsiyah, A., van Dongen, B., Grefen, P., ter Hofstede, A.: Enabling efficient process mining on large data sets: realizing an in-database process mining operator. Distrib. Parallel Databases 38(1), 227–253 (2019). https://doi.org/10.1007/s10619-019-07270-1

    Article  Google Scholar 

  15. van Eck, M.L., et al.: PM2: a process mining project methodology. In: Zdravkovic, J., et al. (eds.) Advanced Information Systems Engineering, pp. 297–313. Springer International Publishing, Cham (2015)

    Google Scholar 

  16. Eichler, R., et al.: Modeling metadata in data lakes—a generic model. Data Knowl. Eng. 136, 101931 (2021)

    Google Scholar 

  17. Elkoumy, G., Fahrenkrog-Petersen, S.A., Dumas, M., Laud, P., Pankova, A., Weidlich, M.: Secure multi-party computation for inter-organizational process mining. In: Nurcan, S., Reinhartz-Berger, I., Soffer, P., Zdravkovic, J. (eds.) BPMDS/EMMSAD -2020. LNBIP, vol. 387, pp. 166–181. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49418-6_11

    Chapter  Google Scholar 

  18. Emamjome, F., et al.: Alohomora: unlocking data quality causes through event log context. In: Proceedings of the 28th European Conference on Information Systems (ECIS2020), pp. 1–16 (2020)

    Google Scholar 

  19. Esser, S., et al.: Multi-dimensional Event Data in Graph Databases. Springer, Heidelberg (2021)

    Book  Google Scholar 

  20. Fahrenkrog-Petersen, S.A., et al.: PRETSA: event log sanitization for privacy-aware process discovery. In: Proceedings of 2019 International Conference on Process Mining, ICPM 2019, pp. 1–8 (2019)

    Google Scholar 

  21. dos Santos Garcia, C., et al.: Process mining techniques and applications – a systematic mapping study. Expert Syst. Appl. 133, 260–295 (2019)

    Google Scholar 

  22. Geyer-Klingeberg, J., et al.: Process mining and robotic process automation: a perfect match. In: 16th International Conference on Business Process Management, July 2018

    Google Scholar 

  23. Ghahfarokhi, A.F., et al.: OCEL Standard

    Google Scholar 

  24. Goel, K., et al.: Data governance for managing data quality in process mining. In: Proceedings of the 42nd International Conference on Information Systems (ICIS 2021) (2021)

    Google Scholar 

  25. Grisold, T., et al.: Adoption, use and management of process mining in practice. Bus. Process Manag. J. 27(2), 369–387 (2021)

    Article  Google Scholar 

  26. Jacobi, C., et al.: Maturity model for applying process mining in supply chains: literature overview and practical implications. Logist. J. 2020, 9–14 (2020)

    Google Scholar 

  27. Jans, M., et al.: From relational database to event log: decisions with quality impact. In: Teniente, E., Weidlich, M. (eds.) Business Process Management Workshops. BPM 2017. LNBIP, vol. 308, pp. 588–599. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-74030-0_46

  28. Leno, V., Polyvyanyy, A., Dumas, M., La Rosa, M., Maggi, F.M.: Robotic process mining: vision and challenges. Bus. Inf. Syst. Eng. 63(3), 301–314 (2020). https://doi.org/10.1007/s12599-020-00641-4

    Article  Google Scholar 

  29. Li, G., de Murillas, E.G.L., de Carvalho, R.M., van der Aalst, W.M.P.: Extracting object-centric event logs to support process mining on databases. In: Mendling, J., Mouratidis, H. (eds.) CAiSE 2018. LNBIP, vol. 317, pp. 182–199. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92901-9_16

    Chapter  Google Scholar 

  30. Maita, A.R.C., et al.: A systematic mapping study of process mining. Enterp. Inf. Syst. 12(5), 505–549 (2018)

    Article  Google Scholar 

  31. Mannhardt, F., et al.: Privacy-preserving process mining: differential privacy for event logs. Bus. Inf. Syst. Eng. 61(5), 595–614 (2019)

    Article  Google Scholar 

  32. Marin-Castro, H.M., et al.: Event log preprocessing for process mining: a review. Appl. Sci. 11(22), 1–29 (2021)

    Article  Google Scholar 

  33. Martin, N., et al.: Opportunities and challenges for process mining in organizations: results of a Delphi study. Bus. Inf. Syst. Eng. 63(5), 511–527 (2021). https://doi.org/10.1007/s12599-021-00720-0

    Article  Google Scholar 

  34. Martin, N., et al.: The use of process mining in business process simulation model construction structuring the field. Bus. Inf. Syst. Eng. 58(1), 73–87 (2015)

    Article  Google Scholar 

  35. Mishra, V.P., et al.: Process mining in intrusion detection-the need of current digital world. In: Singh, D. et al. (eds.) Advanced Informatics for Computing Research, pp. 238–246. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-5780-9_22

  36. Nguyen, G.-T.: Siemens: driving global change with the digital fit rate in Order2Cash. In: Reinkemeyer, L. (eds.) Process Mining in Action, pp. 49–57. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40172-6_9

  37. Park, G., et al.: Realizing a digital twin of an organization using action-oriented process mining. In: Proceedings of 2021 3rd International Conference on Process Mining, ICPM 2021, pp. 104–111 (2021)

    Google Scholar 

  38. Price, R.J., et al.: Empirical refinement of a semiotic information quality framework. In: Proceedings of Annual Hawaii International Conference on System Sciences, p. 216 (2005)

    Google Scholar 

  39. Rafiei, M., von Waldthausen, L., van der Aalst, W.M.P.: Supporting confidentiality in process mining using abstraction and encryption. In: Ceravolo, P., van Keulen, M., Gómez-López, M.T. (eds.) SIMPDA 2018-2019. LNBIP, vol. 379, pp. 101–123. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46633-6_6

    Chapter  Google Scholar 

  40. Suriadi, S., et al.: Event log imperfection patterns for process mining: towards a systematic approach to cleaning event logs. Inf. Syst. 64, 132–150 (2017)

    Article  Google Scholar 

  41. Sutcliffe, A.: Scenario-based requirements engineering. In: Proceedings of 11th IEEE International Requirements Engineering Conference, 2003, pp. 320–329 (2003)

    Google Scholar 

  42. Syed, R., Leemans, S.J.J., Eden, R., Buijs, J.A.C.M.: Process mining adoption. In: Fahland, D., Ghidini, C., Becker, J., Dumas, M. (eds.) BPM 2020. LNBIP, vol. 392, pp. 229–245. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58638-6_14

    Chapter  Google Scholar 

  43. Verbeek, H.M.W., Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: XES, XESame, and ProM 6. In: Soffer, P., Proper, E. (eds.) CAiSE Forum 2010. LNBIP, vol. 72, pp. 60–75. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-17722-4_5

    Chapter  Google Scholar 

  44. Weber, P., et al.: A principled approach to mining from noisy logs using heuristics miner. In: Proceedings of 2013 IEEE Symposium Computational Intelligence Data Mining, CIDM 2013 - 2013 IEEE Symposium Series on Computational Intelligence, SSCI 2013, pp. 119–126 (2013)

    Google Scholar 

  45. Weigand, H., et al.: An artifact ontology for design science research. Data Knowl. Eng. 133, 101878 (2021)

    Article  Google Scholar 

  46. Wynn, M.T., Sadiq, S.: Responsible process mining - a data quality perspective. In: Hildebrandt, T., van Dongen, B.F., Röglinger, M., Mendling, J. (eds.) BPM 2019. LNCS, vol. 11675, pp. 10–15. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26619-6_2

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruud van Cruchten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

van Cruchten, R., Weigand, H. (2022). Towards Event Log Management for Process Mining - Vision and Research Challenges. In: Guizzardi, R., Ralyté, J., Franch, X. (eds) Research Challenges in Information Science. RCIS 2022. Lecture Notes in Business Information Processing, vol 446. Springer, Cham. https://doi.org/10.1007/978-3-031-05760-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05760-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05759-5

  • Online ISBN: 978-3-031-05760-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics