Skip to main content

Semantic and Interactive Search in an Advanced Note-Taking App for Learning Material

  • 335 Accesses

Part of the Lecture Notes in Computer Science book series (LNCS,volume 13328)


Note-taking apps on tablets are increasingly becoming the go-to space for managing learning material as a student. In particular, digital note-taking presents certain advantages over traditional pen-and-paper approaches when it comes to organizing and retrieving a library of notes thanks to various search functionalities. This paper presents improvements to the classic textual-input-based search field, by introducing a semantic search that considers the meaning of a user’s search terms and an automatic question-answering process that extracts the answer to the user’s question from their notes for more efficient information retrieval. Additionally, visual methods for finding specific notes are proposed, which do not require the input of text by the user: through the integration of a semantic similarity metric, notes similar to a selected document can be displayed based on common topics. Furthermore, a fully interactive process allows one to search for notes by selecting different types of dynamically generated filters, thus eliminating the need for textual input. Finally, a graph-based visualization is explored for the search results, which clusters semantically similar notes closer together to relay additional information to the user besides the raw search results.


  • Learning material
  • Semantic search
  • Question-answering
  • Note similarity
  • Interactive search

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-031-05657-4_2
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-031-05657-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.


  1. Atashpendar, A., Grévisse, C., Rothkugel, S.: Enhanced sketchnoting through semantic integration of learning material. In: Florez, H., Leon, M., Diaz-Nafria, J.M., Belli, S. (eds.) ICAI 2019. CCIS, vol. 1051, pp. 340–353. Springer, Cham (2019).

    CrossRef  Google Scholar 

  2. Beaudoin, L.: Cognitive Productivity: Using Knowledge to Become Profoundly Effective. CogZest (2013)

    Google Scholar 

  3. Bengio, Y., Ducharme, R., Vincent, P., Janvin, C.: A neural probabilistic language model. J. Mach. Learn. Res. 3, 1137–1155 (2003)

    MATH  Google Scholar 

  4. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with subword information. Trans. Assoc. Comput. Linguist. 5, 135–146 (2017)

    CrossRef  Google Scholar 

  5. vor der Brück, T., Pouly, M.: Text similarity estimation based on word embeddings and matrix norms for targeted marketing. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1827–1836 (2019).

  6. Burton-Jones, A., Storey, V.C., Sugumaran, V., Purao, S.: A heuristic-based methodology for semantic augmentation of user queries on the web. In: Song, I.-Y., Liddle, S.W., Ling, T.-W., Scheuermann, P. (eds.) ER 2003. LNCS, vol. 2813, pp. 476–489. Springer, Heidelberg (2003).

    CrossRef  Google Scholar 

  7. Carter, J.F., Van Matre, N.H.: Note taking versus note having. J. Educ. Psychol. 67(6), 900 (1975).

    CrossRef  Google Scholar 

  8. Damerau, F.J.: A technique for computer detection and correction of spelling errors. Commun. ACM 7(3), 171–176 (1964).

    CrossRef  Google Scholar 

  9. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota, June 2019.,

  10. Di Vesta, F.J., Gray, G.S.: Listening and note taking. J. Educ. Psychol. 63(1), 8 (1972).

    CrossRef  Google Scholar 

  11. Eades, P.: A heuristic for graph drawing. Congressus Numerantium 42, 149–160 (1984)

    MathSciNet  Google Scholar 

  12. Fisher, J.L., Harris, M.B.: Effect of note taking and review on recall. J. Educ. Psychol. 65(3), 321 (1973).

    CrossRef  Google Scholar 

  13. Fruchterman, T.M., Reingold, E.M.: Graph drawing by force-directed placement. software. Pract. Exper. 21(11), 1129–1164 (1991).

  14. Gomaa, W.H., Fahmy, A.A., et al.: A survey of text similarity approaches. Int. J. Comput. Appl. 68(13), 13–18 (2013).

    CrossRef  Google Scholar 

  15. Greiner-Petter, A., et al.: Math-word embedding in math search and semantic extraction. Scientometrics 125(3), 3017–3046 (2020).

    CrossRef  Google Scholar 

  16. Guha, R., McCool, R.: Tap: a semantic web platform. Comput. Netw. 42(5), 557–577 (2003).

    CrossRef  MATH  Google Scholar 

  17. Guha, R., McCool, R., Miller, E.: Semantic search. In: Proceedings of the 12th International Conference on World Wide Web, pp. 700–709 (2003).

  18. Hliaoutakis, A., Varelas, G., Voutsakis, E., Petrakis, E.G., Milios, E.: Information retrieval by semantic similarity. Int. J. Seman. Web Inf. Syst. (IJSWIS) 2(3), 55–73 (2006).

    CrossRef  Google Scholar 

  19. Hölscher, C., Strube, G.: Web search behavior of internet experts and newbies. Comput. Netw. 33(1–6), 337–346 (2000).

    CrossRef  Google Scholar 

  20. Huston, S., Croft, W.B.: Evaluating verbose query processing techniques. In: Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 291–298 (2010).

  21. Koren, J., Zhang, Y., Liu, X.: Personalized interactive faceted search. In: Proceedings of the 17th International Conference on World Wide Web, pp. 477–486 (2008).

  22. Kurteva, A., De Ribaupierre, H.: Interface to query and visualise definitions from a knowledge base. In: Brambilla, M., Chbeir, R., Frasincar, F., Manolescu, I. (eds.) ICWE 2021. LNCS, vol. 12706, pp. 3–10. Springer, Cham (2021).

    CrossRef  Google Scholar 

  23. Lei, Y., Uren, V., Motta, E.: SemSearch: a search engine for the semantic web. In: Staab, S., Svátek, V. (eds.) EKAW 2006. LNCS (LNAI), vol. 4248, pp. 238–245. Springer, Heidelberg (2006).

    CrossRef  Google Scholar 

  24. Mendes, P.N., Jakob, M., García-Silva, A., Bizer, C.: Dbpedia spotlight: shedding light on the web of documents. In: Proceedings of the 7th International Conference on Semantic Systems, pp. 1–8 (2011).

  25. Mihalcea, R., Tarau, P.: Textrank: bringing order into texts. In: Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing, pp. 404–411 (2004)

    Google Scholar 

  26. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - vol. 2, pp. 3111–3119. NIPS 2013, Curran Associates Inc., Red Hook, NY (2013)

    Google Scholar 

  27. Miller, G.A.: WordNet: An Electronic Lexical Database. MIT press (1998)

    Google Scholar 

  28. Mitra, M., Singhal, A., Buckley, C.: Improving automatic query expansion. In: Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 206–214 (1998).

  29. Pasca, M.A., Harabagiu, S.M.: High performance question/answering. In: Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 366–374 (2001).

  30. Piccinno, F., Ferragina, P.: From tagme to wat: a new entity annotator. In: Proceedings of the First International Workshop on Entity Recognition and Disambiguation, pp. 55–62. ERD 2014. ACM, New York, NY (2014).

  31. Piolat, A., Olive, T., Kellogg, R.T.: Cognitive effort during note taking. Appl. Cogn. Psychol. 19(3), 291–312 (2005).

    CrossRef  Google Scholar 

  32. Plake, C., Schiemann, T., Pankalla, M., Hakenberg, J., Leser, U.: AliBaba: PubMed as a graph. Bioinformatics 22(19), 2444–2445 (2006).

  33. Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: SQuAD: 100,000+ questions for machine comprehension of text. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2383–2392. Association for Computational Linguistics, Austin, Texas, November 2016.,

  34. Rocchio, J.: Relevance feedback in information retrieval. Smart Retrieval Syst. Exper. Autom. Doc. Process. 313–323 (1971)

    Google Scholar 

  35. Soto, A.J., Przybyła, P., Ananiadou, S.: Thalia: semantic search engine for biomedical abstracts. Bioinformatics 35(10), 1799–1801 (2019).

    CrossRef  Google Scholar 

  36. Srihari, R., Li, W.: Information extraction supported question answering. Tech. rep, CYMFONY NET INC WILLIAMSVILLE NY (1999)

    Google Scholar 

  37. Tablan, V., Bontcheva, K., Roberts, I., Cunningham, H.: Mímir: an open-source semantic search framework for interactive information seeking and discovery. J. Web Semant. 30, 52–68 (2015).

    CrossRef  Google Scholar 

  38. Tutte, W.T.: How to draw a graph. Proc. London Math. Soc. 3(1), 743–767 (1963).

    MathSciNet  CrossRef  MATH  Google Scholar 

  39. Wang, W., Wei, F., Dong, L., Bao, H., Yang, N., Zhou, M.: Minilm: deep self-attention distillation for task-agnostic compression of pre-trained transformers. In: NeurIPS 2020. ACM, February 2020.

  40. Whetzel, P.L., et al.: Bioportal: enhanced functionality via new web services from the national center for biomedical ontology to access and use ontologies in software applications. Nucleic acids Res. 39(suppl_2), W541–W545 (2011).

  41. White, R.W., Dumais, S.T., Teevan, J.: Characterizing the influence of domain expertise on web search behavior. In: Proceedings of the Second ACM International Conference on Web Search and Data Mining, pp. 132–141 (2009).

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Aryobarzan Atashpendar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Atashpendar, A., Grévisse, C., Botev, J., Rothkugel, S. (2022). Semantic and Interactive Search in an Advanced Note-Taking App for Learning Material. In: Zaphiris, P., Ioannou, A. (eds) Learning and Collaboration Technologies. Designing the Learner and Teacher Experience. HCII 2022. Lecture Notes in Computer Science, vol 13328. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05656-7

  • Online ISBN: 978-3-031-05657-4

  • eBook Packages: Computer ScienceComputer Science (R0)