Skip to main content

Bivalvia in Ancient Hydrocarbon Seeps

  • Chapter
  • First Online:
Ancient Hydrocarbon Seeps

Part of the book series: Topics in Geobiology ((TGBI,volume 53))

Abstract

Bivalves are an important part of the methane seep fauna ever since seeps appeared in the geologic record. The chronostratigraphic ranges of seep-inhabiting chemosymbiotic bivalves show an overall increase in diversity at seeps since the Paleozoic. The most common group at Paleozoic and early Mesozoic seeps are modiomorphids, with a few additional records of solemyids and anomalodesmatans. The most common infaunal chemosymbiotic bivalve taxa at modern seeps, lucinids and thyasirids, appeared at seeps in the Late Jurassic and earliest Cretaceous. They diversified during the Cretaceous synchronous with the peak of the “Mesozoic Marine Revolution” and first occurrences of gastropod predatory drill holes in the shells of seep-inhabiting bivalves, soon after the appearance of these gastropods in the mid-Cretaceous. The two dominant bivalve clades of the modern vent and seep fauna, bathymodiolins and vesicomyids, appeared in the Eocene. Their origin has been linked to a deep-water extinction event at the Paleocene-Eocene Thermal Maximum. However, the fossil record of chemosymbiotic bivalves at seeps during this time interval does not display any extinction. Rather, the mid-Eocene appearance of semi-infaunal and epifaunal bivalves such as bathymodiolins and vesicomyids might be linked to a dramatic rise in seawater sulfate concentrations at this time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Institutional Abbreviations in the Figure Captions

    • GZG = Geowissenschaftliches Zentrum, University of Göttingen, Germany

    • JUE = Joetsu University of Education, Japan; collection now at the University Museum of University of Tokyo, Japan

    • PMO = Natural History Museum, University of Oslo, Norway

    • PRI = Paleontological Research Institution, Ithaca, USA

    • UMUT = University Museum of Tokyo University, Japan

    • UOA = University of Auckland, New Zealand

    • USNM = Smithsonian Natural History Museum, Washington DC, USA

    • UWBM = University of Washington, Burke Museum, Seattle, USA

References

  • Adams A (1860) On some new genera and species of Mollusca from Japan. Ann Mag Nat Hist (ser 3) 5:299–303

    Article  Google Scholar 

  • Agirrezabala LM, Kiel S, Blumenberg M et al (2013) Outcrop analogues of pockmarks and associated methane-seep carbonates: a case study from Lower Cretaceous (Albian) of the Basque-Cantabrian Basin, western Pyrenees. Palaeogeogr Palaeoclimatol Palaeoecol 390:94–115

    Article  Google Scholar 

  • Aitken SA, Henderson CM, Collom CJ et al (2002) Stratigraphy, paleoecology and origin of Lower Devonian (Emsian) carbonate mud buildups, Hamar Laghdad, eastern Anti-Atlas, Morocco. Bull Can Petrol Geol 50:217–243

    Article  Google Scholar 

  • Allen JA (1958) On the basic form and adaptations to habitat in the Lucinacea (Eulamellibranchia). Philos Trans R Soc Lond B 241:421–484

    Article  Google Scholar 

  • Amano K (1984) Two species of Mytilidae (Bivalvia) from the Miocene deposits in Hokkaido, Japan. Venus 43:183–189

    Google Scholar 

  • Amano K (2003) Predatory gastropod drill holes in Upper Miocene cold seep Bivalves, Hokkaido, Japan. Veliger 46:90–96

    Google Scholar 

  • Amano K, Ando H (2011) Giant fossil Acharax (Bivalvia: Solemyidae) from the Miocene of Japan. Nautilus 125:207–212

    Google Scholar 

  • Amano K, Jenkins RG (2007) Eocene drill holes in cold-seep bivalves of Hokkaido, northern Japan. Mar Ecol 28:108–114

    Article  Google Scholar 

  • Amano K, Jenkins RG (2011a) New fossil Bathymodiolus (sensu lato) (Bivalvia: Mytilidae) from Oligocene seep-carbonates in eastern Hokkaido, Japan, with remarks on the evolution of the genus. Nautilus 125:29–35

    Google Scholar 

  • Amano K, Jenkins RG (2011b) Fossil record of extant vesicomyid species from Japan. Venus 69:163–176

    Google Scholar 

  • Amano K, Kiel S (2007a) Drill holes in bathymodiolin mussels from a Miocene whale-fall community in Hokkaido, Japan. Veliger 49:265–269

    Google Scholar 

  • Amano K, Kiel S (2007b) Fossil vesicomyid bivalves from the North Pacific region. Veliger 49:270–293

    Google Scholar 

  • Amano K, Kiel S (2010) Taxonomy and distribution of fossil Archivesica (Bivalvia: Vesicomyidae) in Japan. Nautilus 124:155–165

    Google Scholar 

  • Amano K, Kiel S (2011) Fossil Adulomya (Vesicomyidae, Bivalvia) from Japan. Veliger 51:76–90

    Google Scholar 

  • Amano K, Kiel S (2012) Two fossil vesicomyid species (Bivalvia) from Japan and their biogeographic implications. Nautilus 126:79–85

    Google Scholar 

  • Amano K, Little CTS (2005) Miocene whale-fall community from Hokkaido, northern Japan. Palaeogeogr Palaeoclimatol Palaeoecol 215:345–356

    Article  Google Scholar 

  • Amano K, Suzuki A (2010) Redescription of ‘Calyptogena’ shiretokensis Uozumi (Bivalvia: Vesicomyidae) from the Miocene Rusha Formation on the Shiretoko Peninsula, eastern Hokkaido, Japan. Venus 68:165–171

    Google Scholar 

  • Amano K, Jenkins RG, Hikida Y (2007a) A new gigantic Nucinella (Bivalvia: Solemyoida) from the Cretaceous cold-seep deposit in Hokkaido, northern Japan. Veliger 49:84–90

    Google Scholar 

  • Amano K, Little CTS, Inoue K (2007b) A new Miocene whale-fall community from Japan. Palaeogeogr Palaeoclimatol Palaeoecol 247:236–242

    Article  Google Scholar 

  • Amano K, Jenkins RG, Kurihara Y et al (2008) A new genus for Vesicomya inflata Kanie and Nishida, a lucinid shell convergent with that of vesicomyids, from Cretaceous strata of Hokkaido, Japan. Veliger 50:255–262

    Google Scholar 

  • Amano K, Jenkins RG, Aikawa M et al (2010) A Miocene chemosynthetic community from the Ogaya Formation in Joetsu: evidence for depth-related ecologic control among fossil seep communities in the Japan Sea back-arc basin. Palaeogeogr Palaeoclimatol Palaeoecol 286:164–170

    Article  Google Scholar 

  • Amano K, Hasegwa S, Ishihama S (2013a) (Molluscan fossils from core sample collected from off Joetsu during MD 179 cruise.) J Jpn Ass Petrol Technol 78:92–96 (In Japanese)

    Google Scholar 

  • Amano K, Jenkins RG, Sako Y et al (2013b) A Paleogene deep-sea methane-seep community from Honshu, Japan. Palaeogeogr Palaeoclimatol Palaeoecol 387:126–133

    Article  Google Scholar 

  • Amano K, Jenkins RG, Ohara M et al (2014a) Miocene vesicomyid species (Bivalvia) from Wakayama in southern Honshu, Japan. Nautilus 128:9–17

    Google Scholar 

  • Amano K, Saether KP, Little CTS et al (2014b) Fossil vesicomyid bivalves from Miocene hydrocarbon seep sites, North Island, New Zealand. Acta Palaeontol Pol 59:421–428

    Google Scholar 

  • Amano K, Little CTS, Campbell KA et al (2015) Paleocene and Miocene Thyasira sensu stricto (Bivalvia: Thyasiridae) from chemosynthetic communities from Japan and New Zealand. Nautilus 129:43–53

    Google Scholar 

  • Amano K, Jenkins RG, Kurita H (2018a) New and Mesozoic-relict mollusks from Paleocene wood-fall communities in Urahoro Town, eastern Hokkaido, northern Japan. J Paleontol 92:634–647

    Article  Google Scholar 

  • Amano K, Little CTS, Campbell KA (2018b) Lucinid bivalves from Miocene hydrocarbon seep sites of eastern North Island, New Zealand, with comments on Miocene New Zealand seep faunas. Acta Palaeontol Pol 63:371–382

    Article  Google Scholar 

  • Amano K, Miyajima Y, Jenkins RG et al (2019a) Miocene to Recent biogeographic history of vesicomyid bivalves in Japan, with two new records of the family. Nautilus 133:48–56

    Google Scholar 

  • Amano K, Miyajima Y, Nakagawa K et al (2019b) Chemosymbiotic bivalves from the lower Miocene Kurosedani Formation in Toyama Prefecture, central Honshu, Japan. Paleontol Res 23:208–219

    Article  Google Scholar 

  • Anderson AE, Childress JJ, Favuzzi JA (1987) Net uptake of CO2 driven by sulfide and thiosulphate oxidation in the bacterial symbiont-containing bivalve Solemya reidi. J Exp Biol 133:1–31

    Article  Google Scholar 

  • Aoki S (1954) Mollusca from the Miocene Kabeya Formation, Joban coal-field, Fukushima Prefecture, Japan. Sci Rep Tokyo Kyoiku Daigaku (Sec C) 3:23–41

    Google Scholar 

  • Arellano SM, Young CR (2009) Spawning, development, and the duration of larval life in a deep-sea cold-seep mussel. Biol Bull 216:149–162

    Article  Google Scholar 

  • Arellano SM, Van Gaest AL, Johnson SB et al (2014) Larvae from deep-sea methane seeps disperse in surface waters. Proc R Soc B 281:20133276

    Article  Google Scholar 

  • Asato K, Kase T (2019) (Paleoecology of Shikamaia, the Permian giant bivalves (Alatoconchidae: Ambonychioidea) from Japan.) Abstracts of the annual meeting of the Malacological Society of Japan 2019:20 (In Japanese)

    Google Scholar 

  • Åström EKL, Oliver PG, Carroll ML (2017) A new genus and two new species of Thyasiridae associated with methane seeps off Svalbard. Arctic Ocean Mar Biol Res 13(4):402–416

    Google Scholar 

  • Audzijonyte A, Krylova EM, Sahling H et al (2012) Molecular taxonomy reveals broad trans-oceanic distributions and high species diversity of deep-sea clams (Bivalvia: Vesicomyidae: Pliocardiinae) in chemosynthetic environments. Syst Biodivers 10:403–415

    Article  Google Scholar 

  • Baco AR, Smith CR, Peek AS et al (1999) The phylogenetic relationships of whale-fall vesicomyid clams based on mitochondrial COI DNA sequences. Mar Ecol Prog Ser 182:137–147

    Article  Google Scholar 

  • Barry JP, Kochevar RE, Baxter CH (1997) The influence of pore-water chemistry and physiology on the distribution of vesicomyid clams at cold seeps in Monterey Bay: implications for patterns of chemosynthetic community organization. Limnol Oceanogr 42:318–328

    Article  Google Scholar 

  • Batstone RT, Laurich JR, Salvo F et al (2014) Divergent chemosymbiosis-related characters in Thyasira cf. gouldi (Bivalvia, Thyasiridae). PLoS One 9(3):e92856

    Google Scholar 

  • Beets C (1942) Beiträge zur Kenntnis der angeblich oberoligocänen Mollusken-Fauna der Insel Buton, Niederländisch-Ostindien. Leidse Geol Meded 13:255–328

    Google Scholar 

  • Beets C (1953) Reconsideration of the so-called Oligocene fauna in the asphaltic deposits of Buton (Malay Archipelago). Leidse Geol Meded 17:237–258

    Google Scholar 

  • Bertolaso L, Palazzi S (1994) La posizione sistematica di Delphinula bellardii Michelotti, 1847. Boll Malacol 29:291–302

    Google Scholar 

  • Beu AG, Maxwell PA (1990) Cenozoic Mollusca of New Zealand. New Zealand Geological Survey Palaeontogical Bulletin 58. New Zealand Department of Scientific and Industrial Research, Lower Hutt

    Google Scholar 

  • Bieler R, Mikkelsen PM, Collins TM et al (2014) Investigating the bivalve tree of life—an exemplar-based approach combining molecular and novel morphological characters. Invertebr Syst 28:32–115

    Article  Google Scholar 

  • Bouchet P, Cosel RV (2004) The world's largest lucinid is an undescribed species from Taiwan (Mollusca: Bivalvia). Zool Stud 43:704–711

    Google Scholar 

  • Bron HG (1831) Italiens Tertiar-gebide und deren organische Einschlüsse. Heidelburg.

    Google Scholar 

  • Brugnone G (1880) Le conchiglie plioceniche selle vicinanze di Caltasetta. Boll Soc Malacol Ital 6:85–158

    Google Scholar 

  • Campbell KA (2006) Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: past developments and future research directions. Palaeogeogr Palaeoclimatol Palaeoecol 232:362–407

    Article  Google Scholar 

  • Campbell KA, Bottjer DJ (2006) Brachiopods and chemosymbiotic bivalves in Phanerozoic hydrothermal vent and cold-seep paleoenvironments. Geology 23:321–324

    Article  Google Scholar 

  • Campbell KA, Francis DA, Collins M et al (2008) Hydrocarbon seep carbonates of a Miocene forearc (East Coast Basin), North Island, New Zealand. Sediment Geol 204:83–105

    Article  Google Scholar 

  • Carter JG, Altaba CR, Anderson LC et al (2011) A synoptical classification of the Bivalvia (Mollusca). Paleontol Contrib 4:1–47

    Google Scholar 

  • Cary SC (1994) Vertical transmission of a chemoautotrophic symbiont in the protobranch bivalve, Solemya reidi. Mol Mar Biol Biotechnol 3:121–130

    Google Scholar 

  • Chavan A (1969) Superfamily Lucinacea Fleming, 1828. In: Moore RC (ed) Mollusca 6, Bivalvia 2. Treatise on invertebrate paleontology, part N. Geological Society of America and University of Kansas, Boulder, pp N491–N518

    Google Scholar 

  • Chen C, Okutani T, Watanabe HK et al (2018) The first cuspidariid bivalve associated with a hydrothermal vent discovered from the southern Mariana Trough. Venus 76:39–44

    Google Scholar 

  • Chevaldonné P, Jollivet D, Desbruyères D et al (2002) Sister-species of eastern Pacific hydrothermal-vent worms (Ampharetidae, Alvinelidae, Vestimentifera) provide new mitochondrial clock calibration. Cah Biol Mar 43:367–370

    Google Scholar 

  • Childress JJ, Fisher CR, Brooks JM et al (1986) A methanotrophic marine molluscan (Bivalvia Mytilidae) symbiosis: mussels fueled by gas. Science 233:1306–1308

    Article  Google Scholar 

  • Clark BL (1925) Pelecypoda from the marine Oligocene of western North America. Univ Calif Publ Geol Sci 15:69–136

    Google Scholar 

  • Clausen CK, Wignall PB (1990) Early Kimmeridgian bivalves of southern England. Meso Res 2:97–149

    Google Scholar 

  • Coan EV, Scott PV, Bernard FR (2000) Bivalve seashells of western North America: marine bivalve molluscs from Arctic Alaska to Baja California. Santa Barbara Museum of Natural History monograph 2. Santa Barbara Museum of Natural History, Santa Barbara

    Google Scholar 

  • Combosch JD, Collins TM, Glover EM et al (2017) A family-level tree of life for bivalves based on a Sanger-sequencing approach. Mol Phylogenet Evol 107:191–208

    Article  Google Scholar 

  • Conrad TA (1849) Fossils from northwestern America. In: Dana JD (ed) United States exploring expedition during the years 1838, 1839, 1840, 1841, 1842 under the command of Charles Wilkes, U.S.N., atlas, geology, vol 10. Sherman, Philadelphia, pp 722–728

    Google Scholar 

  • Conway NM, Howes BL, McDowell Capuzzo JE et al (1992) Characterization and site description of Solemya borealis (Bivalvia; Solemyidae), another bivalve-bacteria symbiosis. Mar Biol 112:601–613

    Article  Google Scholar 

  • Cooke CW (1919) Contributions to the geology and paleontology of the West Indies IV: Tertiary mollusks from the Leeward Islands and Cuba. Carnegie Inst Wash Publ 291:103–156

    Google Scholar 

  • Cosel RV (2002) A new species of bathymodioline mussel (Mollusca, Bivalvia, Mytilidae) from Mauritania (West Africa), with comments of the genus Bathymodiolus Kenk and Wilson, 1985. Zoosystema 24:259–271

    Google Scholar 

  • Cosel RV, Bouchet P (2008) Tropical deep-water lucinids (Mollusca: Bivalvia) from the Indo-Pacific: essentially unknown, but diverse and occasionally gigantic. In: Héros V, Cowie R, Bouchet P (eds) Tropical deep sea benthos, vol 25. Mém Mus Natl Hist Nat, Paris 196:115–213

    Google Scholar 

  • Cosel RV, Marshall BA (2003) Two new species of large mussels (Bivalvia Mytilidae) from active submarine volcanoes and a cold seep off the eastern North Island of New Zealand, with descriptions of a new genus. Nautilus 117:31–46

    Google Scholar 

  • Cosel RV, Marshall BA (2010) A new genus and species of large mussel (Mollusca: Bivalvia: Mytilidae) from the Kermadec Ridge. Tuhinga 21:59–73

    Google Scholar 

  • Cosel RV, Olu K (2008) A new genus and new species of Vesicomyidae (Mollusca, Bivalvia) from cold seeps on the Barbados accretionary prism, with comments on other species. Zoosystema 30:929–944

    Google Scholar 

  • Cosel RV, Olu K (2009) Large Vesicomyidae (Mollusca: Bivalvia) from cold seeps in the Gulf of Guinea off the coasts of Gabon, Congo and northern Angola. Deep-Sea Res Part II 56:2350–2379

    Article  Google Scholar 

  • Cosel RV, Salas C (2001) Vesicomyidae (Mollusca: Bivalvia) of the genera Vesicomya, Waisiuconcha, Isorropodon and Callogonia in the eastern Atlantic and the Mediterranean. Sarsia 86:333–366

    Article  Google Scholar 

  • d’Orbigny AD (1844) Paléontologie Francaise, terrains Crétacés, vol 3. Mollusques. G. Masson, Paris

    Google Scholar 

  • Dall WH (1891) Scientific results of explorations by the U.S. Fish Commission Steamer Albatross XX: on some new or interesting West American shells obtained from dredgings of the U.S. Fish Commission steamer Albatross in 1888. Proc US Natl Mus 14:174–191

    Article  Google Scholar 

  • Dall WH (1896) Diagnoses of new species of mollusks from the west coast of America. Proc US Natl Mus Nat Hist 18:7–20

    Google Scholar 

  • Dall WH (1901) Synopsis of the Lucinacea and of the American species. Proc US Natl Mus Nat Hist 23:779–833

    Article  Google Scholar 

  • Dall, WH (1903) Contributions to the Tertiary of Florida with especial reference to the Silex-bed of Tampa and the Pliocene beds of the Caloosahatchee River, including in many cases a complete revision of the generic groups treated of and their American Tertiary species, Part VI: concluding the work. Trans Wagner Free Inst Sci Phila 3:1219–1654

    Google Scholar 

  • Dall WH (1908a) A revision of the Solenomyacidae. Nautilus 22:1–2

    Google Scholar 

  • Dall WH (1908b) Reports on the dredging operations off the west coast of Central America to the Galapagos, to the west coast of Mexico, and in the Gulf of California, in charge of Alexander Agassiz, carried on by the US Fish Commission Steamer ‘Albatross,’ during 1891, Lieut. Commander Z. L. Tanner, USN, commanding, XXXVII: reports on the scientific results of the expedition to the eastern tropical Pacific, in charge of Alexander Agassiz, by the U. S. Fish Commission Steamer ‘Albatross,’ from October, 1904, to March, 1905, Lieut. Commander L. M. Garrett, USN, commanding, XIV: the Mollusca and the Brachiopoda. Bull Mus Comp Zool Harvard Univ 43:205–487

    Google Scholar 

  • Dando PR, Southward AJ (1986) Chemoautotrophy in bivalve molluscs of the genus Thyasira. J Mar Biol Assoc UK 66:915–929

    Article  Google Scholar 

  • Danise S, Dominici S, Bertolaso L (2010) Mollusk species at a Pliocene shelf whale fall (Orciano Pisano, Tuscany). Plaios 25:449–456

    Article  Google Scholar 

  • Danise S, Bertolaso L, Dominici S (2016) Bathymodioline mussel dominated Miocene whale fall from Italy. Boll Soc Paleontol Ital 55:47–53

    Google Scholar 

  • Dautzenberg PH (1927) Mollusques provenant des campagnes scientifiques du Prince Albert Ier de Monaco dans l’Océan Atlantique et dans le Golfe de Gascogne. Résultats des Campagnes Scientifiques Accomplies sur son Yacht par Albert Ier Prince Souverain de Monaco LVVII. Impri Monaco, Monaco

    Google Scholar 

  • Decker C, Olu K, Cunha RL et al (2012) Phylogeny and diversification patterns among vesicomyid bivalves. PLoS One 7:1–8

    Article  Google Scholar 

  • Dell RK (1987) Mollusca of the family Mytilidae (Bivalvia) associated with organic remains from deep water off New Zealand, with revisions of the genera Adipicola Dautzenberg, 1927 and Idasola Iredale, 1915. Natl Mus NZ Rec 3:17–36

    Google Scholar 

  • Distel DL, Baco AR, Chuang E et al (2000) Do mussels take wooden steps to deep-sea vents? Nature 403:725–726

    Article  Google Scholar 

  • Distel DL, Altamia MA, Lin Z et al (2017) Discovery of chemoautotrophic symbiosis in the giant shipworm Kuphus polythalamia (Bivalvia: Teredinidae) extends wooden-steps theory. Proc Natl Acad Sci USA 114(18):E3652–E3658

    Article  Google Scholar 

  • Dubilier N, Bergin C, Lott C (2008) Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nat Rev Microbiol 6:725–740

    Article  Google Scholar 

  • Duff KL (1978) Bivalvia from the English lower Oxford Clay (Middle Jurassic). Palaeontol Soc Monogr 132(1–137):pls 1–13

    Google Scholar 

  • Dufour SC (2005) Gill anatomy and evolution of symbiosis in the bivalve family Thyasiridae. Biol Bull 208:200–212

    Article  Google Scholar 

  • Dufour SC (2018) Bivalve chemosymbioses on mudflats. In: Beninger PG (ed) Mudflat ecology. Springer, Heidelberg, pp 169–184

    Chapter  Google Scholar 

  • Dufour SC, Felbeck H (2003) Sulphide mining by the superextensile foot of symbiotic thyasirid bivalves. Nature 426:65–67

    Article  Google Scholar 

  • Duperron S (2010) The diversity of deep-sea mussels and their bacterial symbioses. In: Kiel S (ed) The vent and seep biota, Topics in geobiology 33. Springer, Heidelberg, pp 137–167

    Chapter  Google Scholar 

  • Duperron S, Bergin C, Zielinski F et al (2006) A dual symbiosis shared by two mussel species, Bathymodiolus azoricus and Bathymodiolus puteoserpentis (Bivalvia: Mytilidae), from hydrothermal vents along the northern Mid-Atlantic Ridge. Environ Microbiol 8:1141–1447

    Article  Google Scholar 

  • Duperron S, Fiala-Médoni A, Caprais JC et al (2007) Evidence for chemoautotrophic symbiosis in a Mediterranean cold seep clam (Bivalvia: Lucinidae): comparative sequence analysis of bacterial 16S rRNA, APS reductase and RubisCO genes. FEMS Microbiol Ecol 59:64–74

    Article  Google Scholar 

  • Duperron S, Halary S, Lorion J et al (2008) Unexpected co-occurrence of six bacterial symbionts in the gills of the cold seep mussel Idas sp. (Bivalvia: Mytilidae). Environ Microbiol 10:433–445

    Article  Google Scholar 

  • Fischer P (1861) Decription d’une genre nouveau. J Conchyliol 9:345–347

    Google Scholar 

  • Fleming CA (1950) New Zealand Recent Thyasiridae (Mollusca). Trans R Soc NZ 78:251–254

    Google Scholar 

  • Forsey GF (2013) Fossil evidence for the escalation and origin of marine mutualisms. J Nat Hist 47:1833–1864

    Article  Google Scholar 

  • Foster WJ, Danise S, Twitchett R (2017) A silicified early Triassic marine assemblage from Svalbard. J Syst Palaeontol 15:851–877

    Article  Google Scholar 

  • Fujiwara Y (2003) Endosymbioses between invertebrates and chemosymbiotic bacteria. Jpn J Benthol 58:26–33

    Article  Google Scholar 

  • Fujiwara Y, Kato C, Masui N et al (2001) Dual symbiosis in a cold seep thyasirid clam Maorithyas hadalis from the hadal zone in the Japan Trench, western Pacific. Mar Ecol Prog Ser 214:151–159

    Article  Google Scholar 

  • Fujiwara Y, Okutani T, Yamanaka T et al (2009) Solemya pervernicosa lives in sediment underneath submerged whale carcasses: its biological significance. Venus 68:27–37

    Google Scholar 

  • Fukasawa Y, Matsumoto H, Beppu S et al (2017) Molecular phylogenetic analysis of chemosymbiotic Solemyidae and Thyasiridae. Open J Mar Sci 7:124–141

    Article  Google Scholar 

  • Gabb WM (1866) Description of the Tertiary invertebrate fossils. Calif Geol Surv Palaeontol 2:1–38

    Google Scholar 

  • Gaillard C, Rio M, Rolin Y (1992) Fossil chemosynthetic communities related to vents or seeps in sedimentary basins: the pseudobioherms of southeastern France compared to other world examples. Palaios 7:451–465

    Article  Google Scholar 

  • Génio L, Kiel S, Cunha MR et al (2012) Shell microstructures of mussels (Bivalvia: Mytilidae: Bathymodiolinae) from deep-sea chemosynthetic sites: do they have a phylogenetic significance? Deep-Sea Res Part I 64:86–103

    Article  Google Scholar 

  • Génio L, Rodrigues CF, Guedes IF et al (2015) Mammal carcasses attract a swarm of mussels in the deep Atlantic: insights into colonization and biogeography of a chemosymbiotic species. Mar Ecol 36:71–81

    Article  Google Scholar 

  • Gill FL, Little CTS (2013) A new genus of lucinid bivalve from hydrocarbon seeps. Acta Palaeontol Pol 58:573–578

    Google Scholar 

  • Gill FL, Harding IC, Little CTS et al (2005) Palaeogene and Neogene cold seep communities in Barbados, Trinidad and Venezuela: an overview. Palaeogeogr Palaeoclimatol Palaeoecol 227:191–209

    Article  Google Scholar 

  • Glover EA, Taylor JD (2007) Diversity of chemosymbiotic bivalves on coral reefs: Lucinidae (Mollusca, Bivalvia) of New Caledonia and Lifou. Zoosystema 29:109–181

    Google Scholar 

  • Glover EA, Taylor JD (2016) Lucinidae of the Philippines: highest known diversity and ubiquity of chemosymbiotic bivalves from intertidal to bathyal depths (Mollusca: Bivalvia: Lucinidae). Mém Mus Natl Hist Nat 208:65–234

    Google Scholar 

  • Goedert JL, Campbell KA (1995) An early Oligocene chemosynthetic community from Makah Formation, northeast Olympic Peninsula, Washington. Veliger 38:22–129

    Google Scholar 

  • Goedert JL, Squires RL, Barnes LG (1995) Paleoecology of whale-fall habitats from deep-water Oligocene rocks, Olympic Peninsula, Washington State. Palaeogeogr Palaeoclimatol Palaeoecol 118:151–158

    Article  Google Scholar 

  • Gray JE (1840) Shells of molluscan animals. In: Synopsis of the contents of the British Museum, ed. 42. Woodfall & Son, London, pp 105–152

    Google Scholar 

  • Griffin M, Pastorino G (2006) Madrynomya bruneti n. gen. and sp. (Bivalvia: ?Modiomorphidae): a Mesozoic survivor in the Tertiary of Patagonia? J Paleontol 80:272–282

    Article  Google Scholar 

  • Grossman EL (1993) Evidence that inoceramid bivalves were benthic and harbored chemosynthetic symbionts: comment and reply. Geology 21:94–96

    Article  Google Scholar 

  • Gustafson RG, Reid RGB (1986) Development of the pericalymma larva of Solemya reidi (Bivalvia: Cryptodonta: Solemyidae) as revealed by light and electron microscopy. Mar Biol 93:411–427

    Article  Google Scholar 

  • Gustafson RG, Reid RGB (1988) Association of bacteria with larvae of gutless protobranch bivalve Solemya reidi (Cryptodonta: Solemyidae). Mar Biol 97:389–401

    Article  Google Scholar 

  • Gustafson RG, Turner RD, Lutz RA et al (1998) A new genus and five new species of mussels (Bivalvia: Mytilidae) from deep-sea sulfide/hydrocarbon seeps in the Gulf of Mexico. Malacologia 40:63–112

    Google Scholar 

  • Hall J, Whitfield RP (1872) Descriptions of new species of fossils from the vicinity of Louisville, Kentucky, and the falls of the Ohio; from the collection of Dr. James Knapp, of Louisville (continued). Preprint, Published in advance of the Report of the New York State Museum, Albany

    Google Scholar 

  • Hammer Ø, Nakrem HA, Little CTS et al (2011) Hydrocarbon seeps from close to the Jurassic-Cretaceous boundary, Svalbard. Palaeogeogr Palaeoclimatol Palaeoecol 306:15–26

    Article  Google Scholar 

  • Hansen J, Ezat MM, Åström EKL et al (2019) New late Pleistocene species of Acharax from Arctic methane seeps off Svalbard. J Syst Palaeontol 18(2):197–212

    Article  Google Scholar 

  • Hatae N (1960) (The geology and the geological structure of Amakusa-Shimo-shima, Kumamoto Prefecture.) Sci Rep Kagoshima Univ 9:61–107 (In Japanese)

    Google Scholar 

  • Holmes AM, Oliver PG, Sellanes J (2005) A new species of Lucinoma (Bivalvia: Lucinoidea) from a methane gas seep off the southwest coast of Chile. J Conchol 38:673–681

    Google Scholar 

  • Hryniewicz K, Little CTS, Nakrem HA (2014) Bivalves from the latest Jurassic–earliest Cretaceous hydrocarbon seep carbonates from central Spitsbergen, Svalbard. Zootaxa 3859:1–66

    Article  Google Scholar 

  • Hryniewicz K, Nakrem HA, Hammer Ø et al (2015a) Palaeoecology of the latest Jurassic–earliest Cretaceous hydrocarbon seep carbonates from central Spitsbergen, Svalbard. Lethaia 48:353–374

    Article  Google Scholar 

  • Hryniewicz K, Hagström J, Hammer Ø et al (2015b) Late Jurassic–Early Cretaceous hydrocarbon seep boulders from Novaya Zemlya and their faunas. Palaeogeogr Palaeoclimatol Palaeoecol 436:231–244

    Google Scholar 

  • Hryniewicz K, Bitner MA, Durska E et al (2016) Paleocene methane seep and wood-fall marine environments from Spitsbergen, Svalbard. Palaeogeogr Palaeoclimatol Palaeoecol 462:41–56

    Article  Google Scholar 

  • Hryniewicz K, Amano K, Jenkins RG et al (2017a) Thyasirid bivalves from Cretaceous and Paleogene cold seeps. Acta Palaeontol Pol 62:705–728

    Article  Google Scholar 

  • Hryniewicz K, Jakubowicz M, Belka Z et al (2017b) New bivalves from a Middle Devonian methane seep in Morocco: the oldest record of repetitive shell morphologies among some seep bivalve molluscs. J Syst Palaeontol 15:19–41

    Article  Google Scholar 

  • Hryniewicz K, Amano K, Bitner MA et al (2019) A late Paleocene fauna from shallow-water chemosynthesis-based ecosystems, Spitsbergen, Svalbard. Acta Palaeontol Pol 64:101–141

    Article  Google Scholar 

  • Hryniewicz K, Bakayeva S, Heneralova L et al (2020) Taphonomy and palaeoecology of deep-water chemosymbiotic bivalves from the Eocene of Outer Eastern Carpathians, Ukraine. Palaeogeogr Palaeoclimatol Palaeoecol 553:109782

    Article  Google Scholar 

  • Huber M (2010) Compendium of bivalves. ConchBooks, Hackenheim

    Google Scholar 

  • Huber M (2015) Compendium of bivalves 2. ConchBooks, Harxheim

    Google Scholar 

  • Hybertsen F, Kiel S (2018) A middle Eocene seep deposit with silicified fauna from the Humptulips Formation in western Washington State, USA. Acta Palaeontol Pol 63:751–768

    Article  Google Scholar 

  • Imhoff JF, Sahling H, Süling J et al (2003) 16s rDNA-based phylogeny of sulphur-oxidising bacterial endosymbionts in marine bivalves from cold-seep habitats. Mar Ecol Prog Ser 249:39–51

    Article  Google Scholar 

  • Iredale T (1931) Australian Molluscan notes, no. 1. Rec Aust Mus 18:201–235

    Article  Google Scholar 

  • Iredale T (1939) Mollusca, part I. Scientific Reports of the Great Barrier Reef Expedition 1928–1929, 5. British Museum (Natural History), London, pp 209–245

    Google Scholar 

  • Irwin H, Curtis C, Coleman M (1977) Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sediments. Nature 269:209–213

    Article  Google Scholar 

  • Isakar M, Sinitsyna I (1985) (Redescription of E. Eichwald’s Ordovician bivalve species.) Proc Acad Sci Estonian SSR Geol 34:46–54 (In Russian)

    Google Scholar 

  • Jacobs DK, Lindberg DR (1998) Oxygen and evolutionary patterns in the sea: onshore/offshore trends and recent recruitment of deep-sea faunas. Proc Natl Acad Sci USA 95:9396–9401

    Article  Google Scholar 

  • Jakubowicz M, Hryniewicz K, Belka Z (2017) Mass occurrence of seep-specific bivalves in the oldest-known cold seep metazoan community. Sci Rep 7:14292

    Article  Google Scholar 

  • Jang S-J, Ho P-T, Jun S-Y et al (2020) A newly discovered Gigantidas bivalve mussel from the Onnuri Vent Field on the northern Central Indian Ridge. Deep-Sea Res Part I 161:103299

    Article  Google Scholar 

  • Jeffreys JG (1876) New and peculiar Mollusca of the Pecten, Mytilus and Arca families, procured in the Valorous expedition. Ann Mag Nat Hist 18:424–436

    Article  Google Scholar 

  • Jenkins RG, Kaim A, Hikida Y et al (2007) Methane-flux-dependent lateral faunal changes in a Late Cretaceous chemosymbiotic assemblage from the Nakagawa area of Hokkaido, Japan. Geobiology 5:127–139

    Article  Google Scholar 

  • Jenkins RG, Kaim A, Little CTS et al (2013) Worldwide distribution of the modiomorphid bivalve genus Caspiconcha in late Mesozoic hydrocarbon seeps. Acta Palaeontol Pol 58:357–382

    Google Scholar 

  • Jenkins RG, Kaim A, Sato K et al (2017) Discovery of chemosynthesis-based association on the Cretaceous basal leatherback sea turtle from Japan. Acta Palaeontol Pol 62:683–690

    Article  Google Scholar 

  • Jenkins RG, Kaim A, Amano K et al (2018a) A new Miocene whale-fall community dominated by the bathymodiolin mussel Adipicola from the Hobetsu area, Hokkaido, Japan. Paleontol Res 22:105–111

    Article  Google Scholar 

  • Jenkins RG, Kaim A, Hikida Y et al (2018b) Four new species of the Jurassic to Cretaceous seep-restricted bivalve Caspiconcha and implications for the history of chemosynthetic communities. J Paleontol 92:596–610

    Article  Google Scholar 

  • Johnson SB, Krylova EM, Audzijonyte A et al (2017) Phylogeny and origins of chemosynthetic vesicomyid clams. Syst Biodivers 15:346–360

    Article  Google Scholar 

  • Jones WJ, Vrijenhoek RC (2006) Evolutionary relationships within the ‘Bathymodiolus’ childressi group. Cah Biol Mar 47:403–407

    Google Scholar 

  • Jones WJ, Won YJ, Maas PAY et al (2006) Evolution of habitat use by deep-sea mussels. Mar Biol 148:841–851

    Article  Google Scholar 

  • Kaim A (2011) Non-actualistic wood-fall associations from Middle Jurassic of Poland. Lethaia 44:109–124

    Article  Google Scholar 

  • Kaim A, Schneider S (2012) A conch with a collar: early ontogeny of the enigmatic fossil bivalve Myoconcha. J Paleontol 86:652–658

    Article  Google Scholar 

  • Kaim A, Kobayashi Y, Echizenya H et al (2008) Chemosynthesis-based associations on Cretaceous plesiosaurid carcasses. Acta Paleontol Pol 53:97–104

    Article  Google Scholar 

  • Kaim A, Skupien P, Jenkins RG (2013) A new Lower Cretaceous hydrocarbon seep locality from the Czech Carpathians and its fauna. Palaeogeogr Palaeoclimatol Palaeoecol 390:42–51

    Article  Google Scholar 

  • Kaim A, Jenkins RG, Tanabe K et al (2014) Mollusks from late Mesozoic seep deposits, chiefly in California. Zootaxa 3861:401–440

    Article  Google Scholar 

  • Kalishevich TG, Zalinskaja ED, Serova MY (1981) (Development of organic world of the Pacific Belt on the Mesozoic and Cenozoic boundary: foraminifers, molluscs and palynoflora of the Northwestern Sector) Nauka Publishing House, Moscow (In Russian)

    Google Scholar 

  • Kamenev GM (2009) North Pacific species of the genus Solemya Lamarck, 1818 (Bivalvia: Solemyidae) with notes on Acharax johnsoni (Dall, 1891). Malacologia 51:233–261

    Article  Google Scholar 

  • Kamenev GM, Nadtochy VA, Kuznetsov AP (2001) Conchocele bisecta (Conrad, 1849) (Bivalvia: Thyasirisae) from cold-water methane-rich areas of the sea of Okhotsk. Veliger 44:84–94

    Google Scholar 

  • Kanie Y, Kuramouchi T (1996) Description on possibly chemosynthetic bivalves from the Cretaceous deposits of Obira-cho, northwestern Hokkaido. Sci Rep Yokosuka City Mus 44:63–68

    Google Scholar 

  • Kanie Y, Nishida T (2000) New species of chemosynthetic bivalves, Vesicomya and Acharax, from the Cretaceous deposits of northwestern Hokkaido. Sci Rep Yokosuka City Mus 47:79–84

    Google Scholar 

  • Kanie Y, Sakai T (1997) Chemosynthetic bivalve Nipponothracia, gen. nov. from the Lower Cretaceous and middle Miocene mudstones in Japan. Venus 56:205–220

    Google Scholar 

  • Kase T, Kurihara Y, Hagino K (2007) Middle Miocene chemosynthetic thraciid Nipponothracia gigantea (Shikama, 1968) from central Japan is a large lucinid bivalve (Lucinoidea; Mollusca). Veliger 49:294–302

    Google Scholar 

  • Kase T, Isaji S, Aguilar YM et al (2019) A large new Wareniconcha (Bivalvia: Vesicomyidae) from a Pliocene methane seep deposit in Leyte, Philippines. Nautilus 133:26–30

    Google Scholar 

  • Katto J, Hattori M (1964) Some Veneridae from the Shimantogawa Group in the Outer Zone of Shikoku, Japan. Res Rep Kochi Univ Nat Sci I 13:7–10

    Google Scholar 

  • Kauffman EG, Arthur MA, Howe B et al (1996) Widespread venting of methane-rich fluids in Late Cretaceous (Campanian) submarine springs (Tepee Buttes), Western Interior Seaway, U.S.A. Geology 24:799–802

    Article  Google Scholar 

  • Kauffman EG, Harries PJ, Meyer C et al (2007) Paleoecology of giant Inoceramidae (Platyceramus) on a Santonian (Cretaceous) seafloor in Colorado. J Paleontol 81:64–81

    Article  Google Scholar 

  • Kelly SRA, Blanc E, Price SP et al (2000) Early Cretaceous giant bivalves from seep-related limestone mounds, Wollaston Foreland, northeast Greenland. In: Harper EM, Taylor JD, Crame JA (eds) The evolutionary biology of the Bivalvia. Geological Society of London Special Publication 177. Geological Society, London, pp 227–246

    Google Scholar 

  • Kenk VC, Wilson BR (1985) A new mussel (Bivalvia, Mytilidae) from hydrothermal vents in the Galapagos Rift Zone. Malacologia 26:253–271

    Google Scholar 

  • Kharlameko VI, Kamenev GM, Kalachev AV et al (2016) Thyasirid bivalves from the methane seep community off Paramushir Island (Sea of Okhotsk) and their nutrition. J Molluscan Stud 82:391–402

    Article  Google Scholar 

  • Kiel S (2006) New records and species of mollusks from Tertiary cold-seep carbonates in Washington State, USA. J Paleontol 80:121–137

    Article  Google Scholar 

  • Kiel S (2007) Status of the enigmatic fossil vesicomyid bivalve Pleurophopsis. Acta Palaeontol Pol 52:639–642

    Google Scholar 

  • Kiel S (2008) Fossil evidence for micro- and macrofaunal utilization of large nekton-falls: examples from early Cenozoic deep-water sediments in Washington State, USA. Palaeogeogr Palaeoclimatol Palaeoecol 267:161–174

    Article  Google Scholar 

  • Kiel S (2009) Global hydrocarbon seep-carbonate precipitation correlates with deep-water temperatures and eustatic sea-level fluctuations since the Late Jurassic. Terra Nova 21:279–284

    Article  Google Scholar 

  • Kiel S (2010a) The fossil record of vent and seep mollusks. In: Kiel S (ed) The vent and seep biota. Topics in Geobiology 33. Springer, Heidelberg, pp 255–278

    Chapter  Google Scholar 

  • Kiel S (2010b) On the potential generality of depth-related ecologic structure in cold-seep communities: Cenozoic and Mesozoic examples. Palaeogeogr Palaeoclimatol Palaeoecol 295:245–257

    Article  Google Scholar 

  • Kiel S (2013) Lucinid bivalves from ancient methane seeps. J Molluscan Stud 79:346–363

    Article  Google Scholar 

  • Kiel S (2015) Did shifting seawater sulfate concentrations drive the evolution of deep-sea vent and seep ecosystems? Proc R Soc B 282:20142908

    Article  Google Scholar 

  • Kiel S (2018) Three new bivalve genera from Triassic hydrocarbon seep deposits in southern Turkey. Acta Palaeontol Pol 63:221–234

    Article  Google Scholar 

  • Kiel S, Amano K (2010) Oligocene and Miocene vesicomyid bivalves from the Katalla district in southern Alaska, USA. Veliger 51:76–84

    Google Scholar 

  • Kiel S, Amano K (2013) The earliest bathymodiolin mussels: evaluation of Eocene and Oligocene taxa from deep-sea methane seep deposits in western Washington State, USA. J Paleontol 87:589–602

    Article  Google Scholar 

  • Kiel S, Goedert JL (2006a) Deep-sea food bonanzas: early Cenozoic whale-fall communities resemble wood-fall rather than seep communities. Proc R Soc B 273:2625–2631

    Article  Google Scholar 

  • Kiel S, Goedert JL (2006b) A wood-fall association from late Eocene deep-water sediments of Washington State, USA. Palaios 21:548–556

    Article  Google Scholar 

  • Kiel S, Goedert JL (2007) Six new mollusk species associated with biogenic substrates in Cenozoic deep-water sediments in Washington State, USA. Acta Palaeontol Pol 52:41–52

    Google Scholar 

  • Kiel S, Hansen BT (2015) Cenozoic methane-seep faunas of the Caribbean region. PLoS One 10:e0140788

    Article  Google Scholar 

  • Kiel S, Little TCS (2006) Cold-seep mollusks are older than the general marine mollusk fauna. Science 313:1429–1431

    Article  Google Scholar 

  • Kiel S, Peckmann J (2007) Chemosymbiotic bivalves and stable carbon isotopes indicate hydrocarbon seepage at four unusual Cenozoic fossil localities. Lethaia 40:345–357

    Article  Google Scholar 

  • Kiel S, Peckmann J (2008) Paleoecology and evolutionary significance of an Early Cretaceous Peregrinella-dominated hydrocarbon-seep deposit on the Crimean Peninsula. Palaios 23:751–759

    Article  Google Scholar 

  • Kiel S, Peckmann J (2019) Resource partitioning among brachiopods and bivalves at ancient hydrocarbon seeps: a hypothesis. PLoS One 14:e0221887

    Article  Google Scholar 

  • Kiel S, Taviani M (2017) Chemosymbiotic bivalves from Miocene methane-seep carbonates in Italy. J Paleontol 91:444–466

    Article  Google Scholar 

  • Kiel S, Taviani M (2018) Chemosymbiotic bivalves from the late Pliocene Stirone River hydrocarbon seep complex in northern Italy. Acta Palaeontol Pol 63:557–568

    Article  Google Scholar 

  • Kiel S, Amano K, Jenkins RG (2008) Bivalves from Cretaceous cold seep deposits on Hokkaido, Japan. Acta Palaeontol Pol 53:525–537

    Article  Google Scholar 

  • Kiel S, Amano K, Hikida Y et al (2009) Wood-fall associations from Late Cretaceous deep-water sediments of Hokkaido, Japan. Lethaia 42:74–82

    Article  Google Scholar 

  • Kiel S, Campbell KA, Gaillard C (2010) New and little known mollusks from ancient chemosynthetic environments. Zootaxa 2390:26–48

    Article  Google Scholar 

  • Kiel S, Wiese F, Titus AL (2012) Shallow-water methane-seep faunas in the Cenomanian Western Interior Seaway: no evidence for onshore-offshore adaptations to deep-sea vents. Geology 40:839–842

    Article  Google Scholar 

  • Kiel S, Birgel D, Campbell KA et al (2013) Cretaceous methane-seep deposits from New Zealand and their fauna. Palaeogeogr Palaeoclimatol Palaeoecol 390:17–34

    Article  Google Scholar 

  • Kiel S, Birgel D, Lu Y et al (2021) A thyasirid-dominated methane-seep deposit from Montañita, Ecuador, from the Oligocene-Miocene boundary. Palaeogeogr Palaeoclimatol Palaeoecol 247: 110477

    Google Scholar 

  • Kiel S, Amano K, Jenkins RG (2016) Predation scar frequencies in chemosymbiotic bivalves at an Oligocene seep deposit and their potential relation to inferred sulfide tolerances. Palaeogeogr Palaeoclimatol Palaeoecol 453:139–145

    Article  Google Scholar 

  • Kiel S, Krystyn L, Demirtaş F et al (2017) Late Triassic mollusk-dominated hydrocarbon-seep deposits from Turkey. Geology 45:751–754

    Google Scholar 

  • Kiel S, Sami M, Taviani M (2018) A serpulid-Anodontia-dominated methane-seep deposit from the Miocene of northern Italy. Acta Palaeontol Pol 63:569–577

    Article  Google Scholar 

  • Kiel S, Altamirano AJ, Birgel D et al (2020a) Fossiliferous methane-seep deposits from the Cenozoic Talara Basin in northern Peru. Lethaia 53:166–182

    Article  Google Scholar 

  • Kiel S, Hybertsen F, Hyžný M et al (2020b) Mollusks and a crustacean from early Oligocene methane-seep deposits in the Talara Basin, northern Peru. Acta Palaeontol Pol 65:109–138

    Article  Google Scholar 

  • Knight RI, Morris NJ, Todd JA et al (2014) Exceptional preservation of a novel gill grade in large Cretaceous inoceramids: systematic and palaeobiological implications. Palaeontology 57:37–54

    Article  Google Scholar 

  • Kojima S (2008) (Evolution and phylogeny of vesicomyids.) In: Fujikura K, Okutani T, Maruyama T (eds) Deep-sea life-Biological observations using research submersibles. Tokai University Press, Hatano, pp 143–145 (In Japanese)

    Google Scholar 

  • Kojima S, Fujikura K, Okutani T (2004) Multiple trans-Pacific migrations of deep-sea vent/seep-endemic bivalves in the family Vesicomyidae. Mol Phylogenet Evol 32:396–406

    Article  Google Scholar 

  • Krueger DM, Dubilier N, Cavanaugh CM (1992) Chemoautotrophic symbiosis in the tropical clam Solemya occidentalis (Bivalvia: Protobranchia): ultrastructural and phylogenetic analysis. Mar Biol 126:55–64

    Article  Google Scholar 

  • Krueger DM, Gustafson RG, Cavanaugh CM (1996) Vertical transmission of chemoautotrophic symbionts in the bivalve Solemya velum (Bivalvia: Protobranchia). Biol Bull 190:195–202

    Article  Google Scholar 

  • Krylova EM, Janssen R (2006) Vesicomyidae from Edison Seamount (south west Pacific: Papua New Guinea: New Ireland fore-arc basin). Arch Molluskenkd 135:231–261

    Article  Google Scholar 

  • Krylova EM, Sahling H (2006) Recent bivalve molluscs of the genus Calyptogena (Vesicomyidae). J Mollusan Stud 72:359–395

    Article  Google Scholar 

  • Krylova EM, Sahling H (2010) Vesicomyidae (Bivalvia): current taxonomy and distribution. PLoS One 5:e9957

    Article  Google Scholar 

  • Krylova EM, Sahling H (2020) A new genus Turneroconcha (Bivalvia: Pliocardiinae) for the giant hydrothermal vent clam ‘Calyptogena’ magnifica. Zootaxa 4808(1):79–100

    Google Scholar 

  • Kuhara T, Kano Y, Yoshikoshi K et al (2014) Shell morphology, anatomy and gill histology of the deep-sea bivalve Elliptiolucina ingens and molecular phylogenetic reconstruction of the chemosynthetic family Lucinidae. Venus 72:13–27

    Google Scholar 

  • Kurihara Y (2007) Occurrence of Epilucina californica (Conrad) (Bivalvia: Lucinidae) from the Neogene of Japan, with notes on the biogeographic history of Epilucina. Paleontol Res 11:29–39

    Article  Google Scholar 

  • Kuroda T (1931) (Fossil Mollusca.) In: Homma F (ed) Geology of the central part of Shinano, part 4. Kokin Shoin, Tokyo, pp 1–90 (In Japanese)

    Google Scholar 

  • Kuroda T (1943) (Akebiconcha, a new pelecypod genus.) Venus 13:14–18 (In Japanese)

    Google Scholar 

  • Kuznetsov AP, Shileyko AA (1984) (On gutless Protobranchia (Bivalvia).) Biol Nauki 1984: 39–40 (In Russian)

    Google Scholar 

  • La Perna R (2005) A gigantic deep-sea Nucinellidae from the tropical West Pacific (Bivalvia: Protobranchia). Zootaxa 881:1–10

    Article  Google Scholar 

  • Lamarck JB (1818) Histoire naturelle des animaux sans vertèbres, vol 5. Deterville, Paris

    Google Scholar 

  • Laming SR, Duperron S, Gaudron SM et al (2015) Adapted to change: the rapid development of symbiosis in newly settled, fast-maturing chemosymbiotic mussels in the deep sea. Mar Environ Res 112(B):100–112

    Article  Google Scholar 

  • Laming SR, Gaudron SM, Duperron S (2018) Lifecycle ecology of deep-sea chemosymbiotic mussels: a review. Front Mar Sci 5(282):1–15

    Google Scholar 

  • Leanza A (1940) Myoconcha neuquena n. sp. Del Lias de Piedra Pintada en El Neuquén. Paleontologia 22:123–131

    Google Scholar 

  • Leckenby J (1859) On the Kelloway Rock of Yorkshire coast. Q J Geol Soc 15:4–15

    Article  Google Scholar 

  • Liljedahl L (1991) Contrasting feeding strategies in bivalves from the Silurian of Gotland. Palaeontology 34:219–235

    Google Scholar 

  • Link HF (1807) Beschreibung der Naturalien-Sammlung der Universität Rostock. Universität Rostock, Rostock

    Google Scholar 

  • Little CTS, Vrijenhoek RC (2003) Are hydrothermal vent animals living fossils? Trends Ecol Evol 18:582–588

    Article  Google Scholar 

  • Little CTS, Maslenikov VV, Morris NJ et al (1999) Two Paleozoic hydrothermal vent communities from the southern Ural Mountains, Russia. Palaeontology 42:1043–1078

    Article  Google Scholar 

  • Little CTS, Birgel D, Boyce AJ et al (2015) Late Cretaceous (Maastrichtian) shallow water hydrocarbon seeps from Snow Hill and Seymour Islands James Ross Basin, Antarctica. Palaeogeogr Palaeoclimatol Palaeoecol 418:213–228

    Article  Google Scholar 

  • Liu J, Liu H, Zhang H (2018) Phylogeny and evolutionary radiation of the marine mussels (Bivalvia: Mytilidae) based on mitochondrial and nuclear genes. Mol Phylogenet Evol 126:233–240

    Article  Google Scholar 

  • Lorion J, Duperron S, Gros O et al (2008) Several deep-sea mussels and their associated symbionts are able to live both on wood and on whale falls. Proc R Soc B 276:177–185

    Article  Google Scholar 

  • Lorion J, Kiel S, Faure B et al (2013) Adaptive radiation of chemosymbiotic deep-sea mussels. Proc R Soc B 280:20131243

    Article  Google Scholar 

  • MacLeod KG, Hoppe KA (1992) Evidence that inoceramid bivalves were benthic and harbored chemosynthetic symbionts. Geology 20:117–120

    Article  Google Scholar 

  • Majima R, Nobuhara T, Kitazaki T (2005) Review of fossil chemosynthetic assemblages in Japan. Palaeogeogr Palaeoclimatol Palaeoecol 227:86–123

    Article  Google Scholar 

  • Martin AM, Goffredi SK (2011) ‘Pliocardia’ krylovata, a new species of vesicomyid clam from cold seeps along the Costa Rica margin. J Mar Biol Assoc UK 92:1127–1137

    Article  Google Scholar 

  • Marwick J (1953) Divisions and faunas of the Hokonui System (Triassic and Jurassic). Paleontol Bull 21:1–141

    Google Scholar 

  • Matos SA, Warren LV, Fürsich FT et al (2017) Paleoecology and paleoenvironments of Permian bivalves of the Serra Alta Formation, Brazil: ordinary suspension feeders or late Paleozoic Gondwana seep organisms? J S Am Earth Sci 77:21–41

    Article  Google Scholar 

  • Matsukuma A, Okutani T, Tsuchi R (1982) Three new species of the Nucinellidae (Bivalvia: Protobranchia) from Pacific coast of Japan. Venus 40:177–186

    Google Scholar 

  • Matsumoto E (1971) Oligocene mollusks from the Setogawa Group in central Japan. Bull Natl Sci Mus (Jpn) 14:661–669

    Google Scholar 

  • McLeod RJ, Wing SR, Skilton JE (2010) High incidence of invertebrate-chemoautotroph symbioses in benthic communities of the New Zealand fjords. Limnol Oceanogr 55:2097–2106

    Article  Google Scholar 

  • Meek FB (1873) Descriptions of invertebrate fossils of the Silurian and Devonian systems. Geol Surv Ohio Rep 1:1–243

    Google Scholar 

  • Meek FB, Worthen AH (1870) Description of new species and genera of fossils from the Palaeozoic rocks of the western states. Proc Acad Natl Sci Phila 1870:22–45

    Google Scholar 

  • Métivier B, Cosel RV (1993) Acharax alinae n. sp., Solemyidae (Mollusca: Bivalvia) géante du Bassin de Lau. CR Acad Sci Ser III Sci Vie 316:229–237

    Google Scholar 

  • Miller SA (1877) The American Palaeozoic fossils, a catalogue of the genera and species. Cincinnati, Ohio

    Google Scholar 

  • Miyajima Y, Nobuhara T, Koike H (2017) Taxonomic reexamination of three vesicomyid species (Bivalvia) from the middle Miocene Bessho Formation in Nagano Prefecture, central Japan, with notes on vesicomyid diversity. Nautilus 131:51–66

    Google Scholar 

  • Miyazaki JI, Martins LDO, Fujita Y et al (2010) Evolutionary process of deep-sea Bathymodiolus mussels. PLoS One 5:e10363

    Article  Google Scholar 

  • Morris NJ, Dickins JM, Astafieva-Urbaitis K (1991) Upper Palaeozoic anomalodesmatan Bivalvia. Bull Br Mus (Nat Hist) Geol 47:51–100

    Google Scholar 

  • Morton B, Machado FM (2019) Predatory marine bivalves: a review. In: Sheppard C (ed) Advances in marine biology 84. Academic/Elsevier, London

    Google Scholar 

  • Natalicchio M, Peckmann J, Birgel D et al (2015) Seep deposits from northern Istria, Croatia: a first glimpse into the Eocene seep fauna of the Tethys region. Geol Mag 152:444–459

    Article  Google Scholar 

  • Neulinger SC, Sahling H, Süling J et al (2006) Presence of two phylogenetically distinct groups in the deep-sea mussel Acharax (Mollusca: Bivalvia: Solemyidae). Mar Ecol Prog Ser 312:161–168

    Article  Google Scholar 

  • Nobuhara T, Onda D, Kikuchi N et al (2008) (Lithofacies and fossil assemblages of the Upper Cretaceous Sada Limestone, Shimanto City, Kochi Prefecture, Shikoku, Japan.) Fossils 84:47–60 (In Japanese)

    Google Scholar 

  • Nützel A, Kaim A (2014) Diversity, palaeoecology and systematics of a marine fossil assemblage from the late Triassic fossil Cassian Formation at Settsass Scharte, N Italy. Palaeontol Z 88:405–431

    Article  Google Scholar 

  • Ockelmann KW, Dinesen GE (2011) Life on wood—the carnivorous deep-sea mussel Idas argenteus (Bathymodiolinae, Mytilidae, Bivalvia). Mar Biol Res 7:71–84

    Article  Google Scholar 

  • Okutani T (2002) A new thyasirid Conchocele novaqguinensis n. sp. from thanatocoenosis associated with a possible cold seep activity off New Guinea. Venus 61(3/4):141–145

    Google Scholar 

  • Oliver PG (2013) Description of Atopomya dolobrata gen. et sp. nov.: first record of bacterial symbiosis in the Saxicavellinae (Bivalvia). J Conchol 41:359–367

    Google Scholar 

  • Oliver PG (2014) ‘Tubular gills’: extreme gill modification in the Thyasiroidea with the description of Ochetoctena tomasi gen. et sp. nov. (Bivalvia: Thyasiroidea). Zoosyst Evol 90:121–132

    Article  Google Scholar 

  • Oliver PG, Frey MA (2014) Ascetoaxinus quatsinoensis sp. et gen. nov. (Bivalvia: Thyasiroidea) from Vancouver Island, with notes on Conchocele Gabb, 1866, and Channelaxinus Valentich-Scott & Coan, 2012. Zootaxa 3869:452–468

    Article  Google Scholar 

  • Oliver PG, Holmes AM (2006) A new species of Thyasiridae (Bivalvia) from chemosynthetic communities in the Atlantic Ocean. J Conchol 39:175–183

    Google Scholar 

  • Oliver PG, Killeen IJ (2002) The Thyasiridae (Mollusca: Bivalvia) of the British continental shelf and North Sea oilfields: an identification manual. Studies of Marine Biodiversity and Systematics from the National Museum of Wales, BIOMÔR Reports 3. National Museum of Wales, Cardiff

    Google Scholar 

  • Oliver PG, Levin L (2006) A new species of the family Thyasiridae (Mollusca: Bivalvia) from the oxygen minimum zone of the Pakistan Margin. J Mar Biol Assoc UK 86:411–416

    Article  Google Scholar 

  • Oliver PG, Taylor JD (2012) Bacterial symbiosis in the Nucinellidae (Bivalvia: Solemyida) with descriptions of two new species. J Molluscan Stud 78:81–91

    Article  Google Scholar 

  • Oliver PG, Rodrigues CF, Cunha MR (2011) Chemosymbiotic bivalves from the mud volcanoes of the Gulf of Cadiz, NE Atlantic, with descriptions of new species of Solemyidae, Lucinidae and Vesicomyidae. ZooKeys 113:1–38

    Article  Google Scholar 

  • Oliver PG, Southward EC, Dando PR (2012) Bacterial symbiosis in Syssitomya pourtalesiana Oliver, 2012 [Galeommatoidea, Montacutidae]: a bivalve commensal with the deep-sea echinoid Pourtalesia. J Molluscan Stud 79:30–41

    Article  Google Scholar 

  • Olsson AA (1931) Contributions to the Tertiary paleontology of northern Peru, Part 4: the Peruvian Oligocene. Bull Am Paleontol 17:97–264

    Google Scholar 

  • Olu-Le Roy K, Sibuet M, Fiala-Médioni A et al (2004) Cold seep communities in the deep eastern Mediterranean Sea: composition, symbiosis and spatial distribution on mud volcanoes. Deep-Sea Res Part I 51:1915–1936

    Article  Google Scholar 

  • Owen G (1961) A note on the habits and nutrition of Solemya parkinsoni (Protobranchia: Bivalvia). Q J Microsc Sci 102:15–21

    Google Scholar 

  • Paull CK, Martens CS, Chanton JP et al (1989) Old carbon in living organisms and young CaCO3 cements from abyssal brine seeps. Nature 342:166–168

    Article  Google Scholar 

  • Peckmann J, Thiel V (2004) Carbon cycling at ancient methane-seeps. Chem Geol 205:443–467

    Article  Google Scholar 

  • Peckmann J, Gischler E, Oschmann W et al (2001) An Early Carboniferous seep community and hydrocarbon-derived carbonates from the Harz Mountains, Germany. Geology 29:271–274

    Article  Google Scholar 

  • Peckmann J, Kiel S, Sandy MR et al (2011) Mass occurrences of the brachiopod Halorella in late Triassic methane-seep deposits, eastern Oregon. J Geol 119:207–220

    Article  Google Scholar 

  • Peek AS, Feldman RA, Lutz RA et al (1998) Cospeciation of chemoautotrophic bacteria and deep sea clams. Proc Natl Acad Sci USA 95:9962–9966

    Article  Google Scholar 

  • Petersen GH, Vedelsby A (2000) An illustrated catalogue of the Paleocene Bivalvia from Nuussuaq, northwest Greenland: their paleoenvironments and the paleoclimate. Steenstrupia 25:25–120

    Google Scholar 

  • Petersen JM, Zielinski FU, Pape T et al (2011) Hydrogen is an energy source for hydrothermal vent symbioses. Nature 476:176–180

    Article  Google Scholar 

  • Phillips J (1829) Illustrations of the geology of Yorkshire, 1st edn. John Murray, York

    Google Scholar 

  • Pojeta J (1988) The origin and Paleozoic diversification of solemyoid pelecypods. NM Bur Mines Mineral Resour Mem 44:201–271

    Google Scholar 

  • Pojeta J, Runnegar B (1985) The early evolution of diasome molluscs. In: Trueman ER, Clarke MR (eds) Evolution. The mollusca, vol 10. Academic, Orlando, pp 295–336

    Google Scholar 

  • Reid RGB (1980) Aspects of biology of a gutless species of Solemya (Bivalvia: Protobranchia). Can J Zool 58:386–393

    Article  Google Scholar 

  • Reid RGB (1998) Order Solemyoida. In: Beesley PL, Ross GJB, Wells A (eds) Mollusca Southern Synthesis, Fauna of Australia, part A, vol 5. CSIRO Publishing, Melbourne, pp 241–247

    Google Scholar 

  • Rodrigues CF, Duperron S, Gaudron SM (2011) First documented record of a living solemyid bivalve in a pockmark of the Nile Deep-Sea Fan (eastern Mediterranean Sea). Mar Biodivers Rec 4:e10. https://doi.org/10.1017/s175526721100008x

    Article  Google Scholar 

  • Rodrigues CF, Laming SR, Gaudroni SR et al (2015) A sad tale: has the small mussel Idas argenteus lost its symbionts? Biol J Linn Soc 114:398–405

    Article  Google Scholar 

  • Roemer FJ (1839) Die Versteinerungen des norddeutschen Oolithen-Gebirges: ein Nachtrag. Hahn, Hannover

    Google Scholar 

  • Rosenkranz A (1970) Marine Upper Cretaceous and lowermost Tertiary deposits in west Greenland. Bull Geol Soc Den 19:406–453

    Google Scholar 

  • Russell SL, McCartney E, Cavanaugh CM (2018) Transmission strategies in a chemosynthetic symbiosis: detection and quantification of symbionts in host tissues and their environment. Proc Biol Sci 285:20182157

    Google Scholar 

  • Saether KP, Little CTS, Campbell KA et al (2010) New fossil mussels (Bivalvia: Mytilidae) from Miocene hydrocarbon seep deposits, North Island, New Zealand, with general remarks on vent and seep mussels. Zootaxa 2577:1–45

    Article  Google Scholar 

  • Sahling H, Rickert D, Lee RW et al (2002) Macrofaunal community structure and sulfide flux at gas hydrate deposits from the Cascadia convergent margin, NE Pacific. Mar Ecol Prog Ser 231:121–138

    Article  Google Scholar 

  • Salas C, Woodside J (2002) Lucinoma kazani n. sp (Mollusca: Bivalvia): evidence of a living benthic community associated with a cold seep in the Eastern Mediterranean Sea. Deep-Sea Res Part I 49:991–1005

    Article  Google Scholar 

  • Samadi S, Quéméré E, Lorion J et al (2007) Molecular phylogeny in mytilids supports the wooden steps to deep-sea vents hypothesis. C R Biol 330:446–456

    Article  Google Scholar 

  • Samadi S, Puillandre N, Pante E et al (2015) Patchiness of deep-sea communities in Papua New Guinea and potential susceptibility to anthropogenic disturbances illustrated by seep organisms. Mar Ecol 36(Suppl 1):109–132

    Article  Google Scholar 

  • Sartori AF, Harper EM (2009) Sticky bivalves from the Mesozoic: clues to the origin of the anomalodesmatan arenophilic system. Lethaia 42:486–494

    Article  Google Scholar 

  • Sato K, Watanabe H, Sasaki T (2013) A new species of Solemya (Bivalvia: Protobranchia: Solemyidae) from a hydrothermal vent in the Iheya Ridge in the mid-Okinawa Trough, Japan. Nautilus 123(3):93–100

    Google Scholar 

  • Sato K, Kano Y, Setiamarga DHE et al (2020) Molecular phylogeny of protobranch bivalves and systematic implications of their shell microstructure. Zool Scr 49(4):458–472

    Article  Google Scholar 

  • Saul LR, Squires RL, Goedert JL (1996) A new genus of cryptic lucinid? bivalve from Eocene cold seeps and turbidite-influenced mudstone, western Washington. J Paleontol 70:788–794

    Article  Google Scholar 

  • Seike K, Jenkins RG, Watanabe H et al (2012) Novel use of burrow casting as a research tool in deep-sea ecology. Biol Lett 8:648–651

    Article  Google Scholar 

  • Sharma PP, Zardus JD, Boyle EE et al (2013) Into the deep: a phylogenetic approach to the bivalve subclass Protobranchia. Mol Phylogenet Evol 69:188–204

    Article  Google Scholar 

  • Shikama T (1968) On a giant Thracidora from the Hayama Group, Miura Peninsula. Sci Rep Yokohama Natl Univ (sec 2) 14:13–16, pl 2

    Google Scholar 

  • Simone LRL, Mikkelsen PM, Bieler R (2015) Comparative anatomy of selected marine bivalves from the Florida Keys, with notes on Brazilian congeners (Mollusca: Bivalvia). Malacologia 58:1–127

    Article  Google Scholar 

  • Smith CR, Baco AR (2003) Ecology of whale falls at the deep-sea floor. Oceanogr Mar Biol Annu Rev 41:311–354

    Google Scholar 

  • Speden IG (1970) The type Fox Hills Formation, Cretaceous (Maestrichtian), South Dakota, part 2, systematics of the Bivalvia. Peabody Mus Nat Hist Yale Univ Bull 33:1–222

    Google Scholar 

  • Squires RL (1991) New morphologic and stratigraphic information on Calyptogena (Calyptogena) gibbera Crickmay, 1929, (Bivalvia: Vesicomyidae), from the Pliocene and Pleistocene of southern California. Veliger 34:73–77

    Google Scholar 

  • Squires RL, Goedert JL (1991) New late Eocene mollusks from localized limestone deposits formed by subduction-related methane seeps, southwestern Washington. J Paleontol 65:412–416

    Article  Google Scholar 

  • Squires RL, Gring MP (1996) Late Eocene chemosynthetic? bivalves from suspect cold seeps, Wagonwheel Mountain, central California. J Paleontol 70:63–73

    Article  Google Scholar 

  • Stanley SM (1970) Relation of shell form to life habits of the Bivalvia (Mollusca). Geological Society of America Memoir 125. Geological Society of America, Boulder

    Google Scholar 

  • Stanley SM (2014) Evolutionary radiation of shallow-water Lucinidae (Bivalvia with endosymbionts) as a result of the rise of seagrasses and mangroves. Geology 42:803–806

    Article  Google Scholar 

  • Stanton TW (1895) Contributions to the Cretaceous paleontology of the Pacific coast: the fauna of the Knoxville beds. US Geol Surv Bull 133:1–132

    Google Scholar 

  • Stewart RB (1930) Gabb’s California Cretaceous and Tertiary type lamellibranchs. Acad Nat Sci Phila Spec Pub 3(3):1–314

    Google Scholar 

  • Stewart FJ, Cavanaugh CM (2006) Bacterial endosymbioses in Solemya (Mollusca: Bivalvia)-Model systems for studies of symbiont-host adaptation. Antonie Van Leeuwenhoek 90:343–360

    Article  Google Scholar 

  • Sturany R (1896) Zoologische Ergebnisse VII, Mollusken I (Prosobranchier und Opisthobranchier; Scaphopoden; Lamellibranchier) gesammelt von S.M. Schiff ‘Pola’ 1890–1894. Denkschr Kaiserl Akad Wiss Math-Naturwiss Cl 63:1–36

    Google Scholar 

  • Suyari K, Yamazaki T (1987) (Boundary between the north and south Shimanto subbelts in Tokushima Prefecture.) J Sci Univ Tokushima 20:37–46 (In Japanese)

    Google Scholar 

  • Takeda H (1953) The Poronai Formation (Oligocene Tertiary) of Hokkaido and South Sakhalin and its fossil fauna. Stud Coal Geol 3:1–103

    Google Scholar 

  • Tashiro M (1992) (Fossil monograph—Japanese Cretaceous bivalves). Jono Printing, Japan (In Japanese)

    Google Scholar 

  • Taviani M, Angeletti L, Ceregato A (2011) Chemosymbiotic bivalves of the family Solemyidae (Bivalvia, Protobranchia) in the Neogene of the Mediterranean Basin. J Paleontol 85:1067–1076

    Article  Google Scholar 

  • Taylor JD, Glover EA (2005) Cryptic diversity of chemosymbiotic bivalves: a systematic revision of worldwide Anodontia (Mollusca: Bivalvia: Lucinidae). Syst Biodivers 3:281–338

    Article  Google Scholar 

  • Taylor JD, Glover EA (2006) Lucinidae (Bivalvia) – the most diverse group of chemosymbiotic molluscs. Zool J Linnean Soc 148:421–438

    Article  Google Scholar 

  • Taylor JD, Glover EA (2009) New lucinid bivalves from hydrocarbon seeps of the western Atlantic (Mollusca: Bivalvia: Lucinidae). Steenstrupia 30:111–124

    Google Scholar 

  • Taylor JD, Glover EA (2010) Chemosymbiotic bivalves. In: Kiel S (ed) The vent and seep biota. Springer, Heidelberg, pp 107–133

    Chapter  Google Scholar 

  • Taylor JD, Cleevely RJ, Morris NJ (1983) Predatory gastropods and their activities in the Blackdown Greensand (Albian) of England. Palaeontology 26:521–553

    Google Scholar 

  • Taylor JD, Williams ST, Glover EA (2007a) Evolutionary relationships of the bivalve family Thyasiridae (Mollusca: Bivalvia), monophyly and superfamily status. J Mar Biol Assoc UK 87:565–574

    Article  Google Scholar 

  • Taylor JD, Williams ST, Glover EA et al (2007b) A molecular phylogeny of heterodont bivalves (Mollusca: Bivalvia: Heterodonta): new analyses of 18S and 28S rRNA genes. Zool Scr 36:587–606

    Article  Google Scholar 

  • Taylor JD, Glover EA, Williams ST (2008) Ancient chemosynthetic bivalves: systematics of Solemyidae from eastern and southern Australia. In: Davie PJF, Phillips JA (eds) Proceedings of the 13th international marine biological workshop: the marine fauna and flora of Moreton Bay, Queensland. Mem Qld Mus – Nature 54:75–104

    Google Scholar 

  • Taylor JD, Glover EA, Smith L et al (2011) Molecular phylogeny and classification of the chemosymbiotic bivalve family Lucinidae (Mollusca: Bivalvia). Zool J Linnean Soc 163:15–49

    Article  Google Scholar 

  • Taylor JD, Glover EA, Williams ST (2014) Diversification of chemosymbiotic bivalves: origins and relationships of deeper water Lucinidae. Biol J Linn Soc 11:401–420

    Article  Google Scholar 

  • Thiele J, Jaeckel S (1931) Muscheln der Deutschen Tiefsee-Expedition, II Teil. Deutsche Tiefsee-Expedition 1898−1899 21. G. Fischer, Jena, pp 159–268

    Google Scholar 

  • Thubaut J, Puillandre N, Faure BM et al (2013) The contrasted evolutionary fates of deep-sea chemosynthetic mussels (Bivalvia, Bathymodiolinae). Ecol Evol 3:4748–4766

    Article  Google Scholar 

  • Turton W (1822) Conchylia dithyra Insularum britannicarum: the bivalve shells of the British Islands. Natali, London

    Book  Google Scholar 

  • Ulrich EO (1894) The Lower Silurian Lamellibranchiata of Minnesota. Minnesota Geol Nat Hist Surv Final Rep 3:475–628

    Google Scholar 

  • Valdés F, Sellanes J, D’Elía G (2013) Phylogenetic position of vesicomyid clams from a methane seep off central Chile (~36°S) with a molecular timescale for the diversification of the Vesicomyidae. Zool Stud 51:1154–1164

    Google Scholar 

  • Valentich-Scott P, Coan EV (2012) Thyasiroidea. In: Coan EV, Valentich-Scott P (eds) Bivalve seashells of tropical West America: marine bivalve mollusks from Baja California to northern Peru, part 1. Santa Barbara Museum of Natural History, Santa Barbara, pp 362–372

    Google Scholar 

  • Valentich-Scott P, Powell CL II, Lorenson TD et al (2014) A new genus and species of Thyasiridae (Mollusca, Bivalvia) from deep-water, Beaufort Sea, northern Alaska. ZooKeys 462:11–26

    Article  Google Scholar 

  • Valentine JW, Jablonski D, Kidwell SM et al (2006) Assessing the fidelity of the fossil record by using marine bivalves. Proc Natl Acad Sci USA 103:6599–6604

    Article  Google Scholar 

  • Van Winkle K (1919) Remarks on some new species from Trinidad. Bull Am Paleontol 8:19–27

    Google Scholar 

  • Vermeij GJ (1977) The Mesozoic marine revolution: evidence of snails, predators and grazers. Paleobiology 3:245–258

    Article  Google Scholar 

  • Vermeij GJ (1987) Evolution and escalation: an ecological history of life. Princeton University Press, Princeton, New Jersey

    Book  Google Scholar 

  • Vokes HE (1955) Notes on Tertiary and Recent Solemyacidae. J Paleontol 29:534–545

    Google Scholar 

  • Vokes HE (1956) Notes on Nucinellidae (Pelecypoda) with description of a new species from the Eocene of Oregon. J Paleontol 30:652–671

    Google Scholar 

  • Vrijenhoek RC (2013) On the instability and evolutionary age of deep-sea chemosynthetic communities. Deep-Sea Res Part II 92:189–200

    Article  Google Scholar 

  • Wagner CM, Schilling KH (1923) The San Lorenzo Group of the San Emigdio region, California. Univ Calif Publ Bull Dep Geol Sci 14:235–276

    Google Scholar 

  • Walliser EO, Mertz-Kraus R, Schöne BR (2018) The giant inoceramid Platyceramus platinus as a high-resolution paleoclimate archive for the Late Cretaceous of the Western Interior Seaway. Cretac Res 86:73–90

    Article  Google Scholar 

  • Walliser EO, Tanabe K, Hikida Y et al (2019) Sclerochronological study of the gigantic inoceramids Sphenoceramus schmidti and S. sachalinensis from Hokkaido, northern Japan. Lethaia 52:410–428

    Article  Google Scholar 

  • Walton K (2015) New Zealand living Solemyidae (Bivalvia: Protobranchia). Molluscan Res 35:246–261

    Article  Google Scholar 

  • White CA (1882) On certain Cretaceous fossils from Arkansas and Colorado. Proc US Natl Mus 4:136–138

    Article  Google Scholar 

  • White CA (1890) On certain Mesozoic fossils from the islands of St. Paul’s and St. Peter’s in the Straits of Magellan. Proc US Natl Mus 13:13–14

    Article  Google Scholar 

  • Wignall PB, Newton RJ, Little CTS (2005) The timing of paleoenvironmental change and cause-and effect relationships during the early Jurassic mass extinction in Europe. Am J Sci 305:1014–1032

    Article  Google Scholar 

  • Williams ST, Taylor JD, Glover EA (2004) Molecular phylogeny of the Lucinoidea (Bivalvia): non-monophyly and separate acquisition of bacterial chemosymbionts. J Molluscan Stud 70:187–202

    Article  Google Scholar 

  • Wood SV (1851) Monograph of the Crag Mollusca with descriptions of shells from the upper Tertiaries of the British Isles, part 2, bivalves. Palaeontogr Soc Monogr 4:1–150

    Google Scholar 

  • Woodring WP (1925) Miocene Mollusca from Bowden Jamaica: pelecypods and scaphopods. Carnegie Inst Wash Publ 336:1–564

    Google Scholar 

  • Woodring WP (1938) Lower Pliocene mollusks and echinoids from the Los Angeles Basin, California, and their inferred environment. US Geol Surv Prof Pap 190:1–67

    Google Scholar 

  • Wortmann UG, Paytan A (2012) Rapid variability of seawater chemistry over the past 130 million years. Science 337:334–336

    Article  Google Scholar 

  • Xu T, Feng D, Tao J et al (2019) A new species of deep-sea mussel (Bivalvia: Mytilidae: Gigantidas) from the South China Sea: morphology, phylogenetic position, and gill-associated microbes. Deep-Sea Res Part I 146:79–90

    Article  Google Scholar 

  • Yokoyama M (1890) Versteinerungen aus der japanischen Kreide. Palaeontographica 36:159–202

    Google Scholar 

  • Zanzerl H, Dufour SC (2017) The burrowing behavior of symbiotic and asymbiotic thyasirid bivalves. J Conchol 42:299–308

    Google Scholar 

Download references

Acknowledgments

We thank Andrzej Kaim for his invitation to contribute to this chapter. We also thank Simon Schneider and Elizabeth M. Harper for their review and useful comments. This work was partly supported by a Grant-in-aid for Scientific Research from the Japan Society for Promotion of Science (C, 26400500, 2014–2016; C, 17K05691, 2017–2019) to KA and RGJ and a National Science Foundation grant (No. 2014/B/ST10/04886) to KH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazutaka Amano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Amano, K., Kiel, S., Hryniewicz, K., Jenkins, R.G. (2022). Bivalvia in Ancient Hydrocarbon Seeps. In: Kaim, A., Cochran, J.K., Landman, N.H. (eds) Ancient Hydrocarbon Seeps. Topics in Geobiology, vol 53. Springer, Cham. https://doi.org/10.1007/978-3-031-05623-9_10

Download citation

Publish with us

Policies and ethics