Skip to main content

Ambient Light Tolerant Laser-Pen Based Interaction with Curved Multi-projector Displays

  • 597 Accesses

Part of the Lecture Notes in Computer Science book series (LNCS,volume 13303)

Abstract

Large multi-projector displays allow users to be immersed in the data at a grand scale without wearing AR/VR headsets. There has been tremendous advancement in automated projection mapping that uses multiple feedback cameras to stitch and blend images from multiple projectors on curved surfaces of different shapes and sizes. Yet, there is still no easy way to interact with such displays. In this paper, we present a scalable technique that uses the same feedback cameras used for projection mapping to enable multi-user interaction with these displays using multi-colored laser-pens. We also devise methods to achieve the projection mapping and the laser based interaction in the presence of ambient light. This results in an interactive multi-projector system that can be set up and used in an interactive manner in regular illuminated conditions without any disruptions.

Keywords

  • Interaction
  • Laser-pen
  • Human-computer interaction
  • Multi-projector system

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-031-05409-9_14
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-031-05409-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

References

  1. Tehrani, M.A., Gopi, M., Majumder, A.: Automated geometric registration for multi-projector displays on arbitrary 3D shapes using uncalibrated devices. In: IEEE Transactions on Visualization and Computer Graphics, vol. 27, no. 4, pp. 2265–2279, 1 April 2021. https://doi.org/10.1109/TVCG.2019.2950942

  2. Majumder, A., Sajadi, B.: Large area displays: the changing face of visualization. Computer 46(5), 26–33 (2013). https://doi.org/10.1109/MC.2012.429

    CrossRef  Google Scholar 

  3. Aliaga, D.G., Yeung, Y.H., Law, A., Sajadi, B., Majumder, A.: Fast high-resolution appearance editing using superimposed projections. ACM Trans. Graph. 31, 2, 1–13 (2012). Article 13. https://doi.org/10.1145/2159516.2159518

  4. Sajadi, B., Majumder, A.: Autocalibrating tiled projectors on piecewise smooth vertically extruded surfaces. IEEE Trans. Visual Comput. Graphics 17(9), 1209–1222 (2011). https://doi.org/10.1109/TVCG.2011.33

    CrossRef  Google Scholar 

  5. Sajadi, B., Majumder, A.: Markerless view-independent registration of multiple distorted projectors on extruded surfaces using an uncalibrated camera. IEEE Trans. Vis. Comput, Graph. 15(6), 1307–1316 (2009). PMID: 19834203. https://doi.org/10.1109/TVCG.2009.166

  6. Sajadi, B., Tehrani, M.A., Rahimzadeh, M., Majumder, A.: High-resolution lighting of 3D reliefs using a network of projectors and cameras. In: 2015 3DTV-Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON), pp. 1–4 (2015). https://doi.org/10.1109/3DTV.2015.7169372

  7. Majumder, A., Brown, R.G., El-Ghoroury, H.S.: Display gamut reshaping for color emulation and balancing. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops 2010, pp. 17–24 (2010). https://doi.org/10.1109/CVPRW.2010.5543467

  8. Muhammad Twaha, I., Gopi, M., Aditi, M.: Dynamic projection mapping of deformable stretchable materials. In: 26th ACM Symposium on Virtual Reality Software and Technology (VRST 2020), 01–04 November 2020, Virtual Event, Canada. ACM, New York (2020). https://doi.org/10.1145/3385956.3418970

  9. Kurth, P., Lange, V., Siegl, C., Stamminger, M., Bauer, F.: Auto-calibration for dynamic multi-projection mapping on arbitrary surfaces. IEEE Trans. Vis. Comput. Graph. 24(11), 2886–2894 (2018). https://doi.org/10.1109/TVCG.2018.2868530

    CrossRef  Google Scholar 

  10. Siegl, C., Colaianni, M., Stamminger, M., Bauer, F.: Adaptive stray-light compensation in dynamic multi-projection mapping. Comput. Vis. Media 3(3), 263–271 (2017). https://doi.org/10.1007/s41095-017-0090-8

    CrossRef  Google Scholar 

  11. Lange, V., Siegl, C., Colaianni, M., Stamminger, M., Bauer, F.: Robust blending and occlusion compensation in dynamic multi-projection mapping. In: Proceedings of the European Association for Computer Graphics: Short Papers (EG 2017), pp. 1–4. Eurographics Association, Goslar, DEU (2017). https://doi.org/10.2312/egsh.20171000

  12. Sun, Z., Wang, Y., Ye, L.: Research on human-computer interaction with laser-pen in projection display. In: 2008 11th IEEE International Conference on Communication Technology, pp. 620–622 (2008). https://doi.org/10.1109/ICCT.2008.4716152

  13. Kirstein, C., Muller, H.: Interaction with a projection screen using a camera-tracked laser pointer. In: Proceedings 1998 Multimedia Modeling. MMM 1998 (Cat. No. 98EX200), p. 191–192 (1998). https://doi.org/10.1109/MULMM.1998.723001

  14. Ahlborn, B.A.: A practical system for laser pointer interaction on large displays. In: Proceedings of the ACM Symposium on Virtual Reality Software and Technology - VRST 2005. ACM Press (2005)

    Google Scholar 

  15. Stuetzle, C.S., Cutler, B., Sammann, T.: Identifying inexpensive off-the-shelf laser pointers for multi-user interaction on large scale displays (2017)

    Google Scholar 

  16. Davis, J., Chen, X.: Lumipoint: multi-user laser-based interaction on large tiled displays. Displays 23, 205–211 (2001). https://doi.org/10.1016/S0141-9382(02)00039-2

    CrossRef  Google Scholar 

  17. Roman, P., Lazarov, M., Majumder, A.: A scalable distributed paradigm for multi-user interaction with tiled rear projection display walls. In: IEEE Transactions on Visualization and Computer Graphics, vol. 16, no. 6, pp. 1623–1632, November–December 2010. https://doi.org/10.1109/TVCG.2010.128

  18. Sajadi, B., Aditi, M.: Automatic registration of multiple projectors on swept surfaces. In: VRST 2010 (2010)

    Google Scholar 

  19. Sajadi, B., Majumder, A.: Markerless view-independent registration of multiple distorted projectors on extruded surfaces using an uncalibrated camera. IEEE Trans. Vis. Comput. Graph. 15(6), 1307–1316 (2009). https://doi.org/10.1109/TVCG.2009.166

    CrossRef  Google Scholar 

  20. Sajadi, B., Lazarov, M., Majumder, A., Gopi, M.: Color seamlessness in multi-projector displays using constrained gamut morphing. IEEE Trans. Vis. Comput. Graph. 15, 1317–25 (2009). https://doi.org/10.1109/TVCG.2009.124

    CrossRef  Google Scholar 

  21. Majumder, A., Stevens, R.: Color nonuniformity in projection-based displays: analysis and solutions. In: IEEE Transactions on Visualization and Computer Graphics, vol. 10, no. 2, pp. 177–188, March–April 2004. https://doi.org/10.1109/TVCG.2004.1260769

  22. Aditi, M., Rick, S.: Perceptual photometric seamlessness in projection-based tiled displays. ACM Trans. Graph. 24(1), 118–139 (2005). https://doi.org/10.1145/1037957.1037964

  23. Sajadi, B., Majumder, A.: Auto-calibration of cylindrical multi-projector systems. IEEE Virtual Reality Conference (VR) 2010, pp. 155–162 (2010)

    Google Scholar 

  24. Sajadi, B., Majumder, A.: Scalable multi-view registration for multi-projector displays on vertically extruded surfaces. Comput. Graph. Forum. 29, 1063–1072 (2010). https://doi.org/10.1111/j.1467-8659.2009.01676.x

    CrossRef  Google Scholar 

  25. Cao, X., Balakrishnan, R.: Interacting with dynamically defined information spaces using a handheld projector and a pen. In: Proceedings of the 19th Annual ACM Symposium on User Interface Software and Technology, pp. 225–234, October 2006

    Google Scholar 

  26. Cao, X., Forlines, C., Balakrishnan, R.: Multi-user interaction using handheld projectors. In: Proceedings of the 20th Annual ACM Symposium on User Interface Software and Technology, pp. 43–52, October 2007

    Google Scholar 

  27. Davis, J., Chen, X.: Lumipoint: multi-user laser-based interaction on large tiled displays. Displays 23(5), 205–211 (2002)

    CrossRef  Google Scholar 

  28. Izadi, S., Brignull, H., Rodden, T., Rogers, Y., Underwood, M.: Dynamo: a public interactive surface supporting the cooperative sharing and exchange of media. In: Proceedings of the 16th Annual ACM Symposium on User Interface Software and Technology, pp. 159–168, November 2003

    Google Scholar 

  29. Jiang, H., Ofek, E., Moraveji, N., Shi, Y.: Direct pointer: direct manipulation for large-display interaction using handheld cameras. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1107–1110, April 2006

    Google Scholar 

  30. Kim, J., Park, J., Kim, H., Lee, C.: HCI (human computer interaction) using multi-touch tabletop display. In: Pacific RIM Conference on Communications, Computers and Signal Processing, pp. 391–394 (2007)

    Google Scholar 

  31. Krumbholz, C., Leigh, J., Johnson, A., Renambot, L., Kooima, R.: Lambda table: high resolution tiled display table for interacting with large visualizations. In: Workshop for Advanced Collaborative Environments (WACE) (2005)

    Google Scholar 

  32. Shen, C., Vernier, F.D., Forlines, C., Ringel, M.: Diamondspin: an extensible toolkit for around-the-table interaction. In: SIGCHI Conference on Human Factors in Computing Systems, pp. 167–174 (2004)

    Google Scholar 

  33. Stødle, D., Bjørndalen, J.M., Anshus, O.J.: A system for hybrid vision- and sound-based interaction with distal and proximal targets on wall-sized, high-resolution tiled displays. In: IEEE International Workshop on Human Computer Interaction, pp. 59–68 (2007)

    Google Scholar 

  34. Stødle, D., Tor-Magne, S., Hagen, J., Bjørndalen, M., Anshus, O.J.: Gesture-based, touch-free multi-user gaming on wall-sized, high resolution tiled displays. In: 4th International Symposium on Pervasive Gaming Applications, PerGames, pp. 75–83 (2007)

    Google Scholar 

  35. Stødle, D., Troyanskaya, O., Li, K., Anshus, O.J.: Device-free interaction spaces. In: IEEE Symposium on 3D User Interfaces, pp. 39–42 (2009)

    Google Scholar 

  36. Wong, C.-O., Kyoung, D., Jung, K.: Adaptive context aware attentive interaction in large tiled display. In: IEEE International Workshop on Human Computer Interaction, pp. 1016–1025 (2007)

    Google Scholar 

  37. Wu, M., Balakrishnan, R.: Multi-finger and whole hand gestural interaction techniques for multi-user tabletop displays. In: ACM Symposium on User Interface Software and Technology, pp. 193–202 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarvesh Thakur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Thakur, S., Urs, M., Ibrahim, M.T., Sidenko, A., Majumder, A. (2022). Ambient Light Tolerant Laser-Pen Based Interaction with Curved Multi-projector Displays. In: Kurosu, M. (eds) Human-Computer Interaction. Technological Innovation. HCII 2022. Lecture Notes in Computer Science, vol 13303. Springer, Cham. https://doi.org/10.1007/978-3-031-05409-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05409-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05408-2

  • Online ISBN: 978-3-031-05409-9

  • eBook Packages: Computer ScienceComputer Science (R0)