Abstract
Although it originated in the study of 4-dimensional spacetimes, the Newman-Penrose formalism is also an effective tool in dimension three, provided that a distinguished vector field is present. Here we show how a 3-dimensional version of the Newman-Penrose formalism can be used to study both the local and global geometry of Lorentzian 3-manifolds. Globally, we find obstructions to Lorentzian metrics generalizing those of constant curvature; locally, we classify Lorentzian 3-manifolds that admit a timelike Killing vector field. These results have appeared in [1] and [3], the latter joint with R. Ream.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amir Babak Aazami. On the Einstein condition for Lorentzian 3-manifolds. Journal of Mathematical Analysis and Applications, 497(2):124892, 2021.
Amir Babak Aazami and Charles M. Melby-Thompson. On the principal Ricci curvatures of a Riemannian 3-manifold. Advances in Geometry, 19(2):251–262, 2019.
Amir Babak Aazami and Robert Ream. Killing vector fields on Riemannian and Lorentzian 3-manifolds. To apper in Mathematische Nachrichten, 2022.
Renato Bettiol and Benjamin Schmidt. Three-manifolds with many flat planes. Transactions of the American Mathematical Society, 370(1):669–693, 2018.
Yves Carrière. Autour de la conjecture de L. Markus sur les variétés affines. Inventiones Mathematicae, 95(3):615–628, 1989.
Shing-Shen Chern. An elementary proof of the existence of isothermal parameters on a surface. Proceedings of the American Mathematical Society, 6(5):771–782, 1955.
Eugenio Calabi and Lawrence Markus. Relativistic space forms. Annals of Mathematics, pages 63–76, 1962.
Anna Maria Candela and Miguel Sánchez. Geodesics in semi-Riemannian manifolds: geometric properties and variational tools, volume 4. European Mathematical Society Zürich, 2008.
G.S. Hall, T. Morgan, and Z. Perjés. Three-dimensional space-times. General relativity and gravitation, 19(11):1137–1147, 1987.
Bruno Klingler. Complétude des variétés lorentziennes à courbure constante. Mathematische Annalen, 306(2):353–370, 1996.
David Lundberg. On the non-existence of compact Lorentzian manifolds with constant positive curvature. Master’s Thesis, Lund University, 2015.
Ezra Newman and Roger Penrose. An approach to gravitational radiation by a method of spin coefficients. Journal of Mathematical Physics, 3(3):566–578, 1962.
Pawel Nurowski and Arman Taghavi-Chabert. A Goldberg–Sachs theorem in dimension three. Classical and Quantum Gravity, 32(11):115009, 2015.
BenjamÃn Olea. Canonical variation of a Lorentzian metric. Journal of Mathematical Analysis and Applications, 419(1):156–171, 2014.
Barrett O’Neill. Semi—Riemannian Geometry with Applications to Relativity, volume 103. Academic press, 1983.
Alfonso Romero and Miguel Sánchez. Completeness of compact Lorentz manifolds admitting a timelike conformal Killing vector field. Proceedings of the American Mathematical Society, 123(9):2831–2833, 1995.
Alfonso Romero and Miguel Sánchez. An integral inequality on compact Lorentz manifolds, and its applications. Bulletin of the London Mathematical Society, 28(5):509–513, 1996.
Alfonso Romero and Miguel Sánchez. Bochner’s technique on Lorentzian manifolds and infinitesimal conformal symmetries. Pacific Journal of Mathematics, 186(1):141–148, 1998.
Rainer Kurt Sachs and H-H Wu. General Relativity for mathematicians, volume 48. Springer Science & Business Media, 2012.
Benjamin Schmidt and Jon Wolfson. Three-manifolds with constant vector curvature. Indiana University Mathematics Journal, 63(6):1757–1783, 2014.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Aazami, A.B. (2022). Curvature and Killing Vector Fields on Lorentzian 3-Manifolds. In: Albujer, A.L., Caballero, M., GarcÃa-Parrado, A., Herrera, J., Rubio, R. (eds) Developments in Lorentzian Geometry. GELOMA 2021. Springer Proceedings in Mathematics & Statistics, vol 389. Springer, Cham. https://doi.org/10.1007/978-3-031-05379-5_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-05379-5_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-05378-8
Online ISBN: 978-3-031-05379-5
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)