Skip to main content

Curvature and Killing Vector Fields on Lorentzian 3-Manifolds

  • Conference paper
  • First Online:
Developments in Lorentzian Geometry (GELOMA 2021)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 389))

Included in the following conference series:

Abstract

Although it originated in the study of 4-dimensional spacetimes, the Newman-Penrose formalism is also an effective tool in dimension three, provided that a distinguished vector field is present. Here we show how a 3-dimensional version of the Newman-Penrose formalism can be used to study both the local and global geometry of Lorentzian 3-manifolds. Globally, we find obstructions to Lorentzian metrics generalizing those of constant curvature; locally, we classify Lorentzian 3-manifolds that admit a timelike Killing vector field. These results have appeared in [1] and [3], the latter joint with R. Ream.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amir Babak Aazami. On the Einstein condition for Lorentzian 3-manifolds. Journal of Mathematical Analysis and Applications, 497(2):124892, 2021.

    Article  MathSciNet  Google Scholar 

  2. Amir Babak Aazami and Charles M. Melby-Thompson. On the principal Ricci curvatures of a Riemannian 3-manifold. Advances in Geometry, 19(2):251–262, 2019.

    Google Scholar 

  3. Amir Babak Aazami and Robert Ream. Killing vector fields on Riemannian and Lorentzian 3-manifolds. To apper in Mathematische Nachrichten, 2022.

    Google Scholar 

  4. Renato Bettiol and Benjamin Schmidt. Three-manifolds with many flat planes. Transactions of the American Mathematical Society, 370(1):669–693, 2018.

    Article  MathSciNet  Google Scholar 

  5. Yves Carrière. Autour de la conjecture de L. Markus sur les variétés affines. Inventiones Mathematicae, 95(3):615–628, 1989.

    Google Scholar 

  6. Shing-Shen Chern. An elementary proof of the existence of isothermal parameters on a surface. Proceedings of the American Mathematical Society, 6(5):771–782, 1955.

    Article  MathSciNet  Google Scholar 

  7. Eugenio Calabi and Lawrence Markus. Relativistic space forms. Annals of Mathematics, pages 63–76, 1962.

    Google Scholar 

  8. Anna Maria Candela and Miguel Sánchez. Geodesics in semi-Riemannian manifolds: geometric properties and variational tools, volume 4. European Mathematical Society Zürich, 2008.

    Google Scholar 

  9. G.S. Hall, T. Morgan, and Z. Perjés. Three-dimensional space-times. General relativity and gravitation, 19(11):1137–1147, 1987.

    Article  Google Scholar 

  10. Bruno Klingler. Complétude des variétés lorentziennes à courbure constante. Mathematische Annalen, 306(2):353–370, 1996.

    Article  MathSciNet  Google Scholar 

  11. David Lundberg. On the non-existence of compact Lorentzian manifolds with constant positive curvature. Master’s Thesis, Lund University, 2015.

    Google Scholar 

  12. Ezra Newman and Roger Penrose. An approach to gravitational radiation by a method of spin coefficients. Journal of Mathematical Physics, 3(3):566–578, 1962.

    Article  MathSciNet  Google Scholar 

  13. Pawel Nurowski and Arman Taghavi-Chabert. A Goldberg–Sachs theorem in dimension three. Classical and Quantum Gravity, 32(11):115009, 2015.

    Article  MathSciNet  Google Scholar 

  14. Benjamín Olea. Canonical variation of a Lorentzian metric. Journal of Mathematical Analysis and Applications, 419(1):156–171, 2014.

    Article  MathSciNet  Google Scholar 

  15. Barrett O’Neill. Semi—Riemannian Geometry with Applications to Relativity, volume 103. Academic press, 1983.

    Google Scholar 

  16. Alfonso Romero and Miguel Sánchez. Completeness of compact Lorentz manifolds admitting a timelike conformal Killing vector field. Proceedings of the American Mathematical Society, 123(9):2831–2833, 1995.

    Article  MathSciNet  Google Scholar 

  17. Alfonso Romero and Miguel Sánchez. An integral inequality on compact Lorentz manifolds, and its applications. Bulletin of the London Mathematical Society, 28(5):509–513, 1996.

    Article  MathSciNet  Google Scholar 

  18. Alfonso Romero and Miguel Sánchez. Bochner’s technique on Lorentzian manifolds and infinitesimal conformal symmetries. Pacific Journal of Mathematics, 186(1):141–148, 1998.

    Article  MathSciNet  Google Scholar 

  19. Rainer Kurt Sachs and H-H Wu. General Relativity for mathematicians, volume 48. Springer Science & Business Media, 2012.

    Google Scholar 

  20. Benjamin Schmidt and Jon Wolfson. Three-manifolds with constant vector curvature. Indiana University Mathematics Journal, 63(6):1757–1783, 2014.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Babak Aazami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aazami, A.B. (2022). Curvature and Killing Vector Fields on Lorentzian 3-Manifolds. In: Albujer, A.L., Caballero, M., García-Parrado, A., Herrera, J., Rubio, R. (eds) Developments in Lorentzian Geometry. GELOMA 2021. Springer Proceedings in Mathematics & Statistics, vol 389. Springer, Cham. https://doi.org/10.1007/978-3-031-05379-5_4

Download citation

Publish with us

Policies and ethics