Abstract
We analyze and compare properties of Cayley graphs of permutation graphs called transposition graphs as this family of graphs has better degree and diameter properties than other families of graphs. Cayley graphs are directly related to the properties of its generator set and thus Cayley graphs of permutation groups generated by transpositions inherit almost all of the properties of the hypercube. In particular, we study properties of the complete transportation, (transposition) star graph, bubble-sort graph, modified bubble-sort graph and the binary hypercube and use these properties to determine bounds on the energy of these graphs.
Keywords
- Transposition graphs
- Permutation groups
- Network computing
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsNotes
- 1.
\(ST_{n}\) should not be confused with the Star Graph \(S_{k} = K_{1,k}\).
References
Akers, S.B., Harel, D., Krishnamurthy, B.: The star graph: An attractive alternative to the \(n\)-cube. Proc. Int. Conf. Parallel Process, 393–400 (1987).
Akers S. B., Krishnamurthy, B.: A group-theoretic model for symmetric interconnection networks, IEEE Trans. Comput. 38, 555–566 (1989). https://doi.org/10.1109/12.21148
Bacher, R.: Valeur propre minimale du laplacien de Coxeter pour le groupe symétrique. J. Algebra, 167(2), 460–472 (1994).
Biggs, N.: Algebraic Graph Theory. Cambridge University Press, England (2001).
Cheng, E., Liptak, L., Shawash, N.: Orienting Cayley graphs generated by transposition trees. Computers and Mathematics with App 55 (11) 2662–2672 (2008).
Day, K., Tripathi, A.: A comparative study of topological properties of hypercubes and star graphs. IEEE Trans. Comput., 5(1), 31–38 (1994).
Graovac, A., Gutman, I., Trinajsti, N., Topological Approach to the Chemistry of Conjugated Molecules, Springer, Berlin (1977).
Gutman, I., Polansky, O.E.: Mathematical Concepts in Organic Chemistry, Springer, Berlin (1986).
Gutman, I., Trinajstic N., Graph theory and molecular orbitals. Topics Curr. Chem. 42(49), (1973).
Harary, F., Schwenk, A.J.: Which graphs have integral spectra? In: Graphs and Combinatorics (Lecture Notes in Mathematics 406, ed. R. Bari, F. Harary), Springer-Verlag, Berlin-Heidelberg-New York pp. 45–51 (1974).
Heydemann, M.C., Ducourthial, B.: Cayley graphs and interconnection networks. In: G. Hahn, G. Sabidussi, Graph Symmetry, NATO Advanced Science Institutes Series C. In: Mathematica and Physical Sciences, Kluwer Academic Publishers, Dordrecht, 497, 167–224 (1997).
Krakovski R., Mohar B.: Spectrum of Cayley graphs on the symmetric group generated by transpositions. arXiv:1201.2167, 201
Labarre, A.: Combinatorial Aspects of Genome Rearrangements and Haplotype Networks/Aspects (Combinatoires Des Réarrangements Génomiques Et Des Réseaux D’haplotypes). Ph.D. Thesis, Université Libre De Bruxelles (2008).
Lakshmivarahan, S., Jwo, J.S., Dhall, S.: Symmetry in interconnection networks based on Cayley graphs of permutation groups: a survey. Parallel Computing, 19, 361–407 (1993).
Latifi, S., Srimani, P.K.: Transposition networks as a class of fault-tolerant robust networks, IEEE Trans. Comput. 230–238 (1996). https://doi.org/10.1109/12.485375
Shi, Ling-Sheng, and Peng Wu. Conditional Connectivity of Bubble Sort Graphs. Acta Mathematicae Applicatae Sinica, English Series, 33(4), 933–944 (2017). https://doi.org/10.1007/s10255-017-0708-8.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
DeDeo, M.R. (2022). On the Energy of Transposition Graphs. In: Hoffman, F. (eds) Combinatorics, Graph Theory and Computing. SEICCGTC 2020. Springer Proceedings in Mathematics & Statistics, vol 388. Springer, Cham. https://doi.org/10.1007/978-3-031-05375-7_23
Download citation
DOI: https://doi.org/10.1007/978-3-031-05375-7_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-05374-0
Online ISBN: 978-3-031-05375-7
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)