Abstract
From the first proof of concept MEG recordings with Optically Pumped Magnetometer (OPM) 15 years ago, these new sensors have demonstrated to be an interesting alternative to cryogenics sensors for biomagnetic measurements. The most commonly used OPM are alkali based OPMs but this chapter will introduce a new kind of OPM, based on Helium atoms and particularly well-suited to perform biomagnetic recordings. We will describe the history of these sensors, introduce in an elementary way the physics of laser-pumped atomic systems which are used in these Helium OPMs. This chapter will also report the first proofs of concept performed in magnetocardiography (MCG) as well as Magnetoencephalography (MEG) and the last advances with a first multichannel MEG system as well as the perspectives for these OPM.
Keywords
- Helium
- Optically pumped magnetometers
- Room temperature
- Parametric resonance
- Linear polarization
- Biomagnetic fields
- Bandwidth
- Dynamic range
- Three axes measurement
- Magnetoencephalography
- Magnetocardiography
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsNotes
- 1.
- 2.
In contrast with [4] we made the choice here to keep M ss equal to the usual three-step approach steady-state and to reincorporate the factor 2 in the prefactor. Although both approaches yield the same results, the present one allows interpreting M ss as the value of M when optical pumping dominates all the other phenomena.
References
Abramowitz, M., & Stegun, I. A. (eds.) (Jun 1965). Handbook of mathematical functions: With formulas, graphs, and mathematical tables. New York, NY: Dover Publications. 0009-revised edition edn.
Barrat, J., & Cohen-Tannoudji, C. (1961). Étude du pompage optique dans le formalisme de la matrice densité. Journal de Physique et Le Radium, 22(6), 329–336.
Beato, F., Belorizky, E., Labyt, E., Le Prado, M., & Palacios-Laloy, A. (Nov 2018). Theory of a 4He parametric-resonance magnetometer based on atomic alignment. Physical Review A, 98(5), 053431.
Beato, F., & Palacios-Laloy, A. (Dec 2020). Second-order effects in parametric-resonance magnetometers based on atomic alignment. EPJ Quantum Technology, 7(1), 1–14.
Blum, K. (2012). Density matrix theory and applications. Springer Series on Atomic, Optical, and Plasma Physics, vol. 64. Berlin, Heidelberg: Springer.
Bertrand, F., Jager, T., Boness Re, A., Fourcault, W., Le Gal, G., Palacios-Laloy, A., Paulet, J., & Léger, J.M. (2021). A 4He vector zero-field optically pumped magnetometer operated in the Earth-field. Review of Scientific Instruments 92, 105005. https://doi.org/10.1063/5.0062791
Borna, A., Carter, T. R., Goldberg, J. D., Colombo, A. P., Jau, Y. Y., Berry, C., McKay, J., Stephen, J., Weisend, M., & Schwindt, P. D. D. (Nov 2017). A 20-channel magnetoencephalography system based on optically pumped magnetometers. Physics in Medicine & Biology, 62(23), 8909–8923.
Boto, E., Meyer, S. S., Shah, V., Alem, O., Knappe, S., Kruger, P., Fromhold, T. M., Lim, M., Glover, P. M., Morris, P. G., Bowtell, R., Barnes, G. R., & Brookes, M. J. (Apr 2017). A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers. NeuroImage, 149, 404–414. https://doi.org/10.1016/j.neuroimage.2017.01.034. http://www.sciencedirect.com/science/article/pii/S1053811917300411.
Boto, E., Holmes, N., Leggett, J., Roberts, G., Shah, V., Meyer, S. S., Muñoz, L. D., Mullinger, K. J., Tierney, T. M., Bestmann, S., Barnes, G. R., Bowtell, R., & Brookes, M. J. (Mar 2018). Moving magnetoencephalography towards real-world applications with a wearable system. Nature, 555(7698), 657–661.
Breschi, E., & Weis, A. (Nov 2012). Ground-state Hanle effect based on atomic alignment. Physical Review A, 86(5), 053427.
Budker, D., Gawlik, W., Kimball, D. F., Rochester, S. M., Yashchuk, V. V., & Weis, A. (Nov 2002). Resonant nonlinear magneto-optical effects in atoms. Reviews of Modern Physics, 74(4), 1153–1201.
Budker, D., Higbie, J., & Corsini, E. P. (Nov 2013). Optical atomic magnetometer.
Cohen-Tannoudji, C. (Oct 1971). Atomes habillés par des photons optiques ou de radiofréquence. Journal de Physique Colloques, 32(C5), 11–28.
Cohen-Tannoudji, C., Dupont-Roc, J., Haroche, S., & Laloë, F. (1970a). Diverses résonances de croisement de niveaux sur des atomes pompés optiquement en champ nul. i. théorie. Revue de Physique Appliquée, 5(1), 95–101.
Cohen-Tannoudji, C., Dupont-Roc, J., Haroche, S., & Laloö, F. (1970b). Diverses résonances de croisement de niveaux sur des atomes pompés optiquement en champ nul ii. applications à la mesure de champs faibles. Revue de Physique Appliquée, 5(1), 102–108.
Colegrove, F. D., & Franken, P. A. (Jul 1960). Optical pumping of helium in the 3 s 1 metastable state. Physical Review, 119(2), 680–690.
De Tiège, X., Bourguignon, M., Piitulainen, H., & Jousmäki, V. (Nov 2020). Sensorimotor mapping with MEG: An update on the current state of clinical research and practice with considerations for clinical practice guidelines. Journal of Clinical Neurophysiology, 37(6), 564–573. https://doi.org/10.1097/WNP.0000000000000481.
Dupont-Roc, J. (1970). Détermination par des méthodes optiques des trois composantes d’un champ magnétique très faible. Revue de Physique Appliquée, 5(6), 853–864.
Dupont-Roc, J. (1971). Étude théorique de diverses résonances observables en champ nul sur des atomes habillés par des photons de radiofréquence. Journal de Physique, 32(2–3), 135–144.
Durrer, D., Dam, R. T. V., Freud, G. E., Janse, M. J., Meijler, F. L., & Arzbaecher, R. C. (Jun 1970). Total excitation of the isolated human heart. Circulation, 41(6), 899–912. https://doi.org/10.1161/01.CIR.41.6.899. http://circ.ahajournals.org/content/41/6/899
ECGSYN. (2015). ECGSYN - A realistic ECG waveform generator v1.0.0. https://www.physionet.org/content/ecgsyn/1.0.0/
Fourcault, W., Beato, F., Lieb, G., Gal, G. L., Malonda, R. G., Labyt, E., Prado, M. L., & Palacios-Laloy, A.: Helium-4 optically pumped magnetometers for medical imaging, p. 1.
Guttin, C., Leger, J. M., & Stoeckel, F. (Apr 1994). An isotropic earth field scalar magnetometer using optically pumped helium 4. Le Journal de Physique IV, 4(C4), 655–659.
Haroche, S. (1971). Etude théorique et expérimentale des propriétés physiques d’atomes habillés par des photons de radiofréquence. Ph.D. thesis, Univ. Paris VI.
Hui, H. B., Pantazis, D., Bressler, S. L., & Leahy, R. M. (Feb 2010). Identifying true cortical interactions in meg using the nulling beamformer. NeuroImage, 49(4), 3161–3174.
Iivanainen, J., Stenroos, M., & Parkkonen, L. (Feb 2017). Measuring MEG closer to the brain: Performance of on-scalp sensor arrays. NeuroImage, 147, 542–553. https://doi.org/10.1016/j.neuroimage.2016.12.048. http://www.sciencedirect.com/science/article/pii/S1053811916307704
Jager, T., Léger, J. M., Bertrand, F., Fratter, I., & Lalaurie, J. C. (Nov 2010). Swarm absolute scalar magnetometer accuracy: Analyses and measurement results. In 2010 IEEE sensors (pp. 2392–2395).
Johnson, C. N., Schwindt, P. D. D., & Weisend, M. (Sep 2013). Multi-sensor magnetoencephalography with atomic magnetometers. Physics in Medicine and Biology, 58(17), 6065–6077. https://doi.org/10.1088/0031-9155/58/17/6065. https://iopscience.iop.org/article/10.1088/0031-9155/58/17/6065.
Kamada, K., Ito, Y., Ichihara, S., Mizutani, N., & Kobayashi, T. (Mar 2015). Noise reduction and signal-to-noise ratio improvement of atomic magnetometers with optical gradiometer configurations. Optics Express, 23(5), 6976–6987. https://doi.org/10.1364/OE.23.006976.
Kanorsky, S. I., Weis, A., Wurster, J., & Hänsch, T. W. (Feb 1993). Quantitative investigation of the resonant nonlinear faraday effect under conditions of optical hyperfine pumping. Physical Review A, 47(2), 1220–1226.
Karaulanov, T., Savukov, I., & Kim, Y. J. (2016). Spin-exchange relaxation-free magnetometer with nearly parallel pump and probe beams. Measurement Science and Technology, 27(5), 055002.
Kim, K., Begus, S., Xia, H., Lee, S. K., Jazbinsek, V., Trontelj, Z., & Romalis, M. V. (Apr 2014). Multi-channel atomic magnetometer for magnetoencephalography: A configuration study. NeuroImage, 89, 143–151.
Kligfield, P., Gettes, L. S., Bailey, J. J., Childers, R., Deal, B. J., Hancock, E. W., van Herpen, G., Kors, J. A., Macfarlane, P., Mirvis, D. M., Pahlm, O., Rautaharju, P., & Wagner, G. S. (Mar 2007). Recommendations for the standardization and interpretation of the electrocardiogram. Circulation, 115(10), 1306–1324. https://doi.org/10.1161/CIRCULATIONAHA.106.180200. https://www.ahajournals.org/doi/10.1161/circulationaha.106.180200.
Knappe, S., Sander, T. H., Kosch, O., Wiekhorst, F., Kitching, J., & Trahms, L. (Sep 2010). Cross-validation of microfabricated atomic magnetometers with superconducting quantum interference devices for biomagnetic applications. Applied Physics Letters, 97(13), 133703. https://doi.org/10.1063/1.3491548. https://aip.scitation.org/doi/10.1063/1.3491548.
Knowles, P., Bison, G., Castagna, N., Hofer, A., Mtchedlishvili, A., Pazgalev, A., & Weis, A. (Dec 2009). Laser-driven cs magnetometer arrays for magnetic field measurement and control. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 611(2–3), 306–309.
Labyt, E., Corsi, M., Fourcault, W., Palacios Laloy, A., Bertrand, F., Lenouvel, F., Cauffet, G., Prado, M. L., Berger, F., & Morales, S. (Jan 2019). Magnetoencephalography with optically pumped 4he magnetometers at ambient temperature. IEEE Transactions on Medical Imaging, 38(1), 90–98.
Laloë, F., Leduc, M., & Minguzzi, P. (1969). Relations entre l’état angulaire d’une vapeur atomique soumise au pompage optique et ses propriétés d’absorption et de dispersion. Journal de Physique, 30(2–3), 277–288.
Landré, C., Cohen-Tannoudji, C., Dupont-Roc, J., & Haroche, S. (1970). Anisotropie des propriétés magnétiques d’un atome habillé par des photons de rf. Journal de Physique, 31(11–12), 971–983.
Le Gal, G., Lieb, G., Beato, F., Jager, T., Gilles, H., & Palacios-Laloy, A. (Dec 2019). Dual-axis Hanle magnetometer based on atomic alignment with a single optical access. Physical Review Applied, 12(6), 064010.
Le Gal, G., Rouve, L.-L., & Palacios-Laloy, A. (2021). Parametric resonance magnetometer based on elliptically polarized light yielding three-axis measurement with isotropic sensitivity. Applied Physics Letters, 118, 254001. https://doi.org/10.1063/5.0047124
Le Gal, G., & Palacios-Laloy, A. (2022). Zero-field magnetometry based on the combination of atomic orientation and alignment. Physical Review A, 105, 043114. https://doi.org/10.1103/PhysRevA.105.043114
Le Prado, M. (2014). Conception, réalisation et application d’un magnétomètre atomique vectoriel. Ph.D. thesis, Grenoble.
Le Prado, M., Bertrand, F., Morales, S., & Palacios-Laloy, A. (Sep 2018). Reseau de magnetometres vectoriels et procede associe de calibration des couplages entre magnetometres.
Leger, J. M., Bertrand, F., Jager, T., Le Prado, M., Fratter, I., & Lalaurie, J. C. (2009). Swarm absolute scalar and vector magnetometer based on helium 4 optical pumping. Procedia Chemistry, 1(1), 634.
Léger, J. M., Jager, T., Bertrand, F., Hulot, G., Brocco, L., Vigneron, P., Lalanne, X., Chulliat, A., & Fratter, I. (Apr 2015). In-flight performance of the absolute scalar magnetometer vector mode on board the swarm satellites. Earth, Planets and Space, 67(1), 57.
McSharry, P. E., Clifford, G. D., Tarassenko, L., & Smith, L. A. (Mar 2003). A dynamical model for generating synthetic electrocardiogram signals. IEEE Transactions on Biomedical Engineering, 50(3), 289–294. https://doi.org/10.1109/TBME.2003.808805.
Morales, S., Corsi, M. C., Fourcault, W., Bertrand, F., Cauffet, G., Gobbo, C., Alcouffe, F., Lenouvel, F., Prado, M. L., Berger, F., Vanzetto, G., & Labyt, E. (Aug 2017). Magnetocardiography measurements with 4he vector optically pumped magnetometers at room temperature. Physics in Medicine & Biology, 62(18), 7267–7279.
Omont, A. (Jan 1977). Irreducible components of the density matrix. Application to optical pumping. Progress in Quantum Electronics, 5, 69–138.
Osborne, J., Orton, J., Alem, O., & Shah, V. (Feb 2018). Fully integrated, standalone zero field optically pumped magnetometer for biomagnetism. In Steep dispersion engineering and opto-atomic precision metrology XI (vol. 10548, p. 105481G). International Society for Optics and Photonics.
Oyama, D., Adachi, Y., Yumoto, M., Hashimoto, I., & Uehara, G. (Aug 2015). Dry phantom for magnetoencephalography —Configuration, calibration, and contribution. Journal of Neuroscience Methods, 251, 24–36. https://doi.org/10.1016/j.jneumeth.2015.05.004. https://linkinghub.elsevier.com/retrieve/pii/S0165027015001776.
Palacios-Laloy, A., & Le Prado, M. (Feb 2020). Patent FR3107122-A1.
Pfeiffer, C., Ruffieux, S., Andersen, L. M., Kalabukhov, A., Winkler, D., Oostenveld, R., Lundqvist, D., & Schneiderman, J. F. (May 2020). On-scalp MEG sensor localization using magnetic dipole-like coils: A method for highly accurate co-registration. NeuroImage, 212, 116686. https://doi.org/10.1016/j.neuroimage.2020.116686. http://www.sciencedirect.com/science/article/pii/S1053811920301737.
Rampp, S., Stefan, H., Wu, X., Kaltenhäuser, M., Maess, B., Schmitt, F. C., Wolters, C. H., Hamer, H., Kasper, B. S., Schwab, S., Doerfler, A., Blümcke, I., Rössler, K., & Buchfelder, M. (2019). Magnetoencephalography for epileptic focus localization in a series of 1000 cases. Brain, 142(10), 3059–3071. https://doi.org/10.1093/brain/awz231.
Sander, T. H., Preusser, J., Mhaskar, R., Kitching, J., Trahms, L., & Knappe, S. (May 2012). Magnetoencephalography with a chip-scale atomic magnetometer. Biomedical Optics Express, 3(5), 981–990. https://doi.org/10.1364/BOE.3.000981.
Schneiderman, J. F. (Jan 2014). Information content with low- vs. high-T(c) SQUID arrays in MEG recordings: The case for high-T(c) SQUID-based MEG. Journal of Neuroscience Methods, 222, 42–46. https://doi.org/10.1016/j.jneumeth.2013.10.007.
Schultze, V., Schillig, B., IJsselsteijn, R., Scholtes, T., Woetzel, S., & Stolz, R. (Mar 2017). An optically pumped magnetometer working in the light-shift dispersed mz mode. Sensors, 17(3), 561.
Sheng, D., Li, S., Dural, N., & Romalis, M. V. (Apr 2013). Subfemtotesla scalar atomic magnetometry using multipass cells. Physical Review Letters, 110(16), 160802.
Slocum, R. E. (Feb 1970). Advances in optically pumped he4 magnetometers : Resonance and nonresonance techniques. Revue de Physique Appliquée, 5(1), 109–112.
Slocum, R. E., & Reilly, F. N. (Jan 1963). Low field helium magnetometer for space applications. IEEE Transactions on Nuclear Science, 10(1), 165–171.
Slocum, R. E., & Marton, B. (Sep 1973). Measurement of weak magnetic fields using zero-field parametric resonance in optically pumped He4. IEEE Transactions on Magnetics, 9(3), 221–226.
Taulu, S., Kajola, M., & Simola, J. (2004). Suppression of interference and artifacts by the Signal Space Separation Method. Brain Topogr, 16(4), 269–275.
Taulu, S., Simola, J., & Kajola, M. (Oct 2005). Applications of the signal space separation method. IEEE Transactions on Signal Processing, 53, 3359–3372. https://doi.org/10.1109/TSP.2005.853302.
Tierney, T. M., Holmes, N., Mellor, S., López, J. D., Roberts, G., Hill, R. M., Boto, E., Leggett, J., Shah, V., Brookes, M. J., Bowtell, R., & Barnes, G. R. (May 2019). Optically pumped magnetometers: From quantum origins to multi-channel magnetoencephalography. NeuroImage, 199, 598–608.
Weis, A., Wurster, J., & Kanorsky, S. I. (Apr 1993). Quantitative interpretation of the nonlinear faraday effect as a Hanle effect of a light-induced birefringence. JOSA B, 10(4), 716–724.
Weis, A., Bison, G., & Pazgalev, A. S. (Sep 2006). Theory of double resonance magnetometers based on atomic alignment. Physical Review A, 74(3), 033401.
Zachary, J. D. (2017). Advances in fetal magnetocardiography using SERF atomic magnetometers. Ph.D. thesis, University of Wisconsin–Madison.
Zhang, G., Huang, S., & Lin, Q. (Dec 2018). Magnetoencephalography using a compact multichannel atomic magnetometer with pump-probe configuration. AIP Advances, 8(12), 125028.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Palacios-Laloy, A., Le Prado, M., Labyt, E. (2022). Tri-axial Helium-4 Optically Pumped Magnetometers for MEG. In: Labyt, E., Sander, T., Wakai, R. (eds) Flexible High Performance Magnetic Field Sensors. Springer, Cham. https://doi.org/10.1007/978-3-031-05363-4_6
Download citation
DOI: https://doi.org/10.1007/978-3-031-05363-4_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-05362-7
Online ISBN: 978-3-031-05363-4
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)