Skip to main content

Tri-axial Helium-4 Optically Pumped Magnetometers for MEG

  • 522 Accesses

Abstract

From the first proof of concept MEG recordings with Optically Pumped Magnetometer (OPM) 15 years ago, these new sensors have demonstrated to be an interesting alternative to cryogenics sensors for biomagnetic measurements. The most commonly used OPM are alkali based OPMs but this chapter will introduce a new kind of OPM, based on Helium atoms and particularly well-suited to perform biomagnetic recordings. We will describe the history of these sensors, introduce in an elementary way the physics of laser-pumped atomic systems which are used in these Helium OPMs. This chapter will also report the first proofs of concept performed in magnetocardiography (MCG) as well as Magnetoencephalography (MEG) and the last advances with a first multichannel MEG system as well as the perspectives for these OPM.

Keywords

  • Helium
  • Optically pumped magnetometers
  • Room temperature
  • Parametric resonance
  • Linear polarization
  • Biomagnetic fields
  • Bandwidth
  • Dynamic range
  • Three axes measurement
  • Magnetoencephalography
  • Magnetocardiography

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Note that our \(m_{q}^{(k)}\) are the complex conjugate to the ones used by Antoine Weis [10, 65]. We made this choice in order to keep a formalism similar to the one of orientation in the seminal PRM description made in ENS [19].

  2. 2.

    In contrast with [4] we made the choice here to keep M ss equal to the usual three-step approach steady-state and to reincorporate the factor 2 in the prefactor. Although both approaches yield the same results, the present one allows interpreting M ss as the value of M when optical pumping dominates all the other phenomena.

References

  1. Abramowitz, M., & Stegun, I. A. (eds.) (Jun 1965). Handbook of mathematical functions: With formulas, graphs, and mathematical tables. New York, NY: Dover Publications. 0009-revised edition edn.

    Google Scholar 

  2. Barrat, J., & Cohen-Tannoudji, C. (1961). Étude du pompage optique dans le formalisme de la matrice densité. Journal de Physique et Le Radium, 22(6), 329–336.

    CrossRef  CAS  Google Scholar 

  3. Beato, F., Belorizky, E., Labyt, E., Le Prado, M., & Palacios-Laloy, A. (Nov 2018). Theory of a 4He parametric-resonance magnetometer based on atomic alignment. Physical Review A, 98(5), 053431.

    CrossRef  CAS  Google Scholar 

  4. Beato, F., & Palacios-Laloy, A. (Dec 2020). Second-order effects in parametric-resonance magnetometers based on atomic alignment. EPJ Quantum Technology, 7(1), 1–14.

    CrossRef  Google Scholar 

  5. Blum, K. (2012). Density matrix theory and applications. Springer Series on Atomic, Optical, and Plasma Physics, vol. 64. Berlin, Heidelberg: Springer.

    Google Scholar 

  6. Bertrand, F., Jager, T., Boness Re, A., Fourcault, W., Le Gal, G., Palacios-Laloy, A., Paulet, J., & Léger, J.M. (2021). A 4He vector zero-field optically pumped magnetometer operated in the Earth-field. Review of Scientific Instruments 92, 105005. https://doi.org/10.1063/5.0062791

    CrossRef  CAS  PubMed  Google Scholar 

  7. Borna, A., Carter, T. R., Goldberg, J. D., Colombo, A. P., Jau, Y. Y., Berry, C., McKay, J., Stephen, J., Weisend, M., & Schwindt, P. D. D. (Nov 2017). A 20-channel magnetoencephalography system based on optically pumped magnetometers. Physics in Medicine & Biology, 62(23), 8909–8923.

    CrossRef  CAS  Google Scholar 

  8. Boto, E., Meyer, S. S., Shah, V., Alem, O., Knappe, S., Kruger, P., Fromhold, T. M., Lim, M., Glover, P. M., Morris, P. G., Bowtell, R., Barnes, G. R., & Brookes, M. J. (Apr 2017). A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers. NeuroImage, 149, 404–414. https://doi.org/10.1016/j.neuroimage.2017.01.034. http://www.sciencedirect.com/science/article/pii/S1053811917300411.

  9. Boto, E., Holmes, N., Leggett, J., Roberts, G., Shah, V., Meyer, S. S., Muñoz, L. D., Mullinger, K. J., Tierney, T. M., Bestmann, S., Barnes, G. R., Bowtell, R., & Brookes, M. J. (Mar 2018). Moving magnetoencephalography towards real-world applications with a wearable system. Nature, 555(7698), 657–661.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  10. Breschi, E., & Weis, A. (Nov 2012). Ground-state Hanle effect based on atomic alignment. Physical Review A, 86(5), 053427.

    CrossRef  CAS  Google Scholar 

  11. Budker, D., Gawlik, W., Kimball, D. F., Rochester, S. M., Yashchuk, V. V., & Weis, A. (Nov 2002). Resonant nonlinear magneto-optical effects in atoms. Reviews of Modern Physics, 74(4), 1153–1201.

    CrossRef  CAS  Google Scholar 

  12. Budker, D., Higbie, J., & Corsini, E. P. (Nov 2013). Optical atomic magnetometer.

    CrossRef  Google Scholar 

  13. Cohen-Tannoudji, C. (Oct 1971). Atomes habillés par des photons optiques ou de radiofréquence. Journal de Physique Colloques, 32(C5), 11–28.

    Google Scholar 

  14. Cohen-Tannoudji, C., Dupont-Roc, J., Haroche, S., & Laloë, F. (1970a). Diverses résonances de croisement de niveaux sur des atomes pompés optiquement en champ nul. i. théorie. Revue de Physique Appliquée, 5(1), 95–101.

    CrossRef  Google Scholar 

  15. Cohen-Tannoudji, C., Dupont-Roc, J., Haroche, S., & Laloö, F. (1970b). Diverses résonances de croisement de niveaux sur des atomes pompés optiquement en champ nul ii. applications à la mesure de champs faibles. Revue de Physique Appliquée, 5(1), 102–108.

    CrossRef  Google Scholar 

  16. Colegrove, F. D., & Franken, P. A. (Jul 1960). Optical pumping of helium in the 3 s 1 metastable state. Physical Review, 119(2), 680–690.

    CrossRef  CAS  Google Scholar 

  17. De Tiège, X., Bourguignon, M., Piitulainen, H., & Jousmäki, V. (Nov 2020). Sensorimotor mapping with MEG: An update on the current state of clinical research and practice with considerations for clinical practice guidelines. Journal of Clinical Neurophysiology, 37(6), 564–573. https://doi.org/10.1097/WNP.0000000000000481.

    CrossRef  PubMed  Google Scholar 

  18. Dupont-Roc, J. (1970). Détermination par des méthodes optiques des trois composantes d’un champ magnétique très faible. Revue de Physique Appliquée, 5(6), 853–864.

    CrossRef  Google Scholar 

  19. Dupont-Roc, J. (1971). Étude théorique de diverses résonances observables en champ nul sur des atomes habillés par des photons de radiofréquence. Journal de Physique, 32(2–3), 135–144.

    CrossRef  CAS  Google Scholar 

  20. Durrer, D., Dam, R. T. V., Freud, G. E., Janse, M. J., Meijler, F. L., & Arzbaecher, R. C. (Jun 1970). Total excitation of the isolated human heart. Circulation, 41(6), 899–912. https://doi.org/10.1161/01.CIR.41.6.899. http://circ.ahajournals.org/content/41/6/899

  21. ECGSYN. (2015). ECGSYN - A realistic ECG waveform generator v1.0.0. https://www.physionet.org/content/ecgsyn/1.0.0/

  22. Fourcault, W., Beato, F., Lieb, G., Gal, G. L., Malonda, R. G., Labyt, E., Prado, M. L., & Palacios-Laloy, A.: Helium-4 optically pumped magnetometers for medical imaging, p. 1.

    Google Scholar 

  23. Guttin, C., Leger, J. M., & Stoeckel, F. (Apr 1994). An isotropic earth field scalar magnetometer using optically pumped helium 4. Le Journal de Physique IV, 4(C4), 655–659.

    Google Scholar 

  24. Haroche, S. (1971). Etude théorique et expérimentale des propriétés physiques d’atomes habillés par des photons de radiofréquence. Ph.D. thesis, Univ. Paris VI.

    Google Scholar 

  25. Hui, H. B., Pantazis, D., Bressler, S. L., & Leahy, R. M. (Feb 2010). Identifying true cortical interactions in meg using the nulling beamformer. NeuroImage, 49(4), 3161–3174.

    CrossRef  PubMed  Google Scholar 

  26. Iivanainen, J., Stenroos, M., & Parkkonen, L. (Feb 2017). Measuring MEG closer to the brain: Performance of on-scalp sensor arrays. NeuroImage, 147, 542–553. https://doi.org/10.1016/j.neuroimage.2016.12.048. http://www.sciencedirect.com/science/article/pii/S1053811916307704

  27. Jager, T., Léger, J. M., Bertrand, F., Fratter, I., & Lalaurie, J. C. (Nov 2010). Swarm absolute scalar magnetometer accuracy: Analyses and measurement results. In 2010 IEEE sensors (pp. 2392–2395).

    Google Scholar 

  28. Johnson, C. N., Schwindt, P. D. D., & Weisend, M. (Sep 2013). Multi-sensor magnetoencephalography with atomic magnetometers. Physics in Medicine and Biology, 58(17), 6065–6077. https://doi.org/10.1088/0031-9155/58/17/6065. https://iopscience.iop.org/article/10.1088/0031-9155/58/17/6065.

  29. Kamada, K., Ito, Y., Ichihara, S., Mizutani, N., & Kobayashi, T. (Mar 2015). Noise reduction and signal-to-noise ratio improvement of atomic magnetometers with optical gradiometer configurations. Optics Express, 23(5), 6976–6987. https://doi.org/10.1364/OE.23.006976.

    CrossRef  CAS  PubMed  Google Scholar 

  30. Kanorsky, S. I., Weis, A., Wurster, J., & Hänsch, T. W. (Feb 1993). Quantitative investigation of the resonant nonlinear faraday effect under conditions of optical hyperfine pumping. Physical Review A, 47(2), 1220–1226.

    CrossRef  CAS  Google Scholar 

  31. Karaulanov, T., Savukov, I., & Kim, Y. J. (2016). Spin-exchange relaxation-free magnetometer with nearly parallel pump and probe beams. Measurement Science and Technology, 27(5), 055002.

    CrossRef  CAS  Google Scholar 

  32. Kim, K., Begus, S., Xia, H., Lee, S. K., Jazbinsek, V., Trontelj, Z., & Romalis, M. V. (Apr 2014). Multi-channel atomic magnetometer for magnetoencephalography: A configuration study. NeuroImage, 89, 143–151.

    CrossRef  PubMed  Google Scholar 

  33. Kligfield, P., Gettes, L. S., Bailey, J. J., Childers, R., Deal, B. J., Hancock, E. W., van Herpen, G., Kors, J. A., Macfarlane, P., Mirvis, D. M., Pahlm, O., Rautaharju, P., & Wagner, G. S. (Mar 2007). Recommendations for the standardization and interpretation of the electrocardiogram. Circulation, 115(10), 1306–1324. https://doi.org/10.1161/CIRCULATIONAHA.106.180200. https://www.ahajournals.org/doi/10.1161/circulationaha.106.180200.

  34. Knappe, S., Sander, T. H., Kosch, O., Wiekhorst, F., Kitching, J., & Trahms, L. (Sep 2010). Cross-validation of microfabricated atomic magnetometers with superconducting quantum interference devices for biomagnetic applications. Applied Physics Letters, 97(13), 133703. https://doi.org/10.1063/1.3491548. https://aip.scitation.org/doi/10.1063/1.3491548.

  35. Knowles, P., Bison, G., Castagna, N., Hofer, A., Mtchedlishvili, A., Pazgalev, A., & Weis, A. (Dec 2009). Laser-driven cs magnetometer arrays for magnetic field measurement and control. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 611(2–3), 306–309.

    CrossRef  CAS  Google Scholar 

  36. Labyt, E., Corsi, M., Fourcault, W., Palacios Laloy, A., Bertrand, F., Lenouvel, F., Cauffet, G., Prado, M. L., Berger, F., & Morales, S. (Jan 2019). Magnetoencephalography with optically pumped 4he magnetometers at ambient temperature. IEEE Transactions on Medical Imaging, 38(1), 90–98.

    CrossRef  PubMed  Google Scholar 

  37. Laloë, F., Leduc, M., & Minguzzi, P. (1969). Relations entre l’état angulaire d’une vapeur atomique soumise au pompage optique et ses propriétés d’absorption et de dispersion. Journal de Physique, 30(2–3), 277–288.

    CrossRef  Google Scholar 

  38. Landré, C., Cohen-Tannoudji, C., Dupont-Roc, J., & Haroche, S. (1970). Anisotropie des propriétés magnétiques d’un atome habillé par des photons de rf. Journal de Physique, 31(11–12), 971–983.

    CrossRef  Google Scholar 

  39. Le Gal, G., Lieb, G., Beato, F., Jager, T., Gilles, H., & Palacios-Laloy, A. (Dec 2019). Dual-axis Hanle magnetometer based on atomic alignment with a single optical access. Physical Review Applied, 12(6), 064010.

    CrossRef  Google Scholar 

  40. Le Gal, G., Rouve, L.-L., & Palacios-Laloy, A. (2021). Parametric resonance magnetometer based on elliptically polarized light yielding three-axis measurement with isotropic sensitivity. Applied Physics Letters, 118, 254001. https://doi.org/10.1063/5.0047124

    CrossRef  CAS  Google Scholar 

  41. Le Gal, G., & Palacios-Laloy, A. (2022). Zero-field magnetometry based on the combination of atomic orientation and alignment. Physical Review A, 105, 043114. https://doi.org/10.1103/PhysRevA.105.043114

    CrossRef  Google Scholar 

  42. Le Prado, M. (2014). Conception, réalisation et application d’un magnétomètre atomique vectoriel. Ph.D. thesis, Grenoble.

    Google Scholar 

  43. Le Prado, M., Bertrand, F., Morales, S., & Palacios-Laloy, A. (Sep 2018). Reseau de magnetometres vectoriels et procede associe de calibration des couplages entre magnetometres.

    Google Scholar 

  44. Leger, J. M., Bertrand, F., Jager, T., Le Prado, M., Fratter, I., & Lalaurie, J. C. (2009). Swarm absolute scalar and vector magnetometer based on helium 4 optical pumping. Procedia Chemistry, 1(1), 634.

    CrossRef  Google Scholar 

  45. Léger, J. M., Jager, T., Bertrand, F., Hulot, G., Brocco, L., Vigneron, P., Lalanne, X., Chulliat, A., & Fratter, I. (Apr 2015). In-flight performance of the absolute scalar magnetometer vector mode on board the swarm satellites. Earth, Planets and Space, 67(1), 57.

    CrossRef  Google Scholar 

  46. McSharry, P. E., Clifford, G. D., Tarassenko, L., & Smith, L. A. (Mar 2003). A dynamical model for generating synthetic electrocardiogram signals. IEEE Transactions on Biomedical Engineering, 50(3), 289–294. https://doi.org/10.1109/TBME.2003.808805.

    CrossRef  PubMed  Google Scholar 

  47. Morales, S., Corsi, M. C., Fourcault, W., Bertrand, F., Cauffet, G., Gobbo, C., Alcouffe, F., Lenouvel, F., Prado, M. L., Berger, F., Vanzetto, G., & Labyt, E. (Aug 2017). Magnetocardiography measurements with 4he vector optically pumped magnetometers at room temperature. Physics in Medicine & Biology, 62(18), 7267–7279.

    CrossRef  CAS  Google Scholar 

  48. Omont, A. (Jan 1977). Irreducible components of the density matrix. Application to optical pumping. Progress in Quantum Electronics, 5, 69–138.

    CrossRef  Google Scholar 

  49. Osborne, J., Orton, J., Alem, O., & Shah, V. (Feb 2018). Fully integrated, standalone zero field optically pumped magnetometer for biomagnetism. In Steep dispersion engineering and opto-atomic precision metrology XI (vol. 10548, p. 105481G). International Society for Optics and Photonics.

    Google Scholar 

  50. Oyama, D., Adachi, Y., Yumoto, M., Hashimoto, I., & Uehara, G. (Aug 2015). Dry phantom for magnetoencephalography —Configuration, calibration, and contribution. Journal of Neuroscience Methods, 251, 24–36. https://doi.org/10.1016/j.jneumeth.2015.05.004. https://linkinghub.elsevier.com/retrieve/pii/S0165027015001776.

  51. Palacios-Laloy, A., & Le Prado, M. (Feb 2020). Patent FR3107122-A1.

    Google Scholar 

  52. Pfeiffer, C., Ruffieux, S., Andersen, L. M., Kalabukhov, A., Winkler, D., Oostenveld, R., Lundqvist, D., & Schneiderman, J. F. (May 2020). On-scalp MEG sensor localization using magnetic dipole-like coils: A method for highly accurate co-registration. NeuroImage, 212, 116686. https://doi.org/10.1016/j.neuroimage.2020.116686. http://www.sciencedirect.com/science/article/pii/S1053811920301737.

  53. Rampp, S., Stefan, H., Wu, X., Kaltenhäuser, M., Maess, B., Schmitt, F. C., Wolters, C. H., Hamer, H., Kasper, B. S., Schwab, S., Doerfler, A., Blümcke, I., Rössler, K., & Buchfelder, M. (2019). Magnetoencephalography for epileptic focus localization in a series of 1000 cases. Brain, 142(10), 3059–3071. https://doi.org/10.1093/brain/awz231.

    CrossRef  PubMed  Google Scholar 

  54. Sander, T. H., Preusser, J., Mhaskar, R., Kitching, J., Trahms, L., & Knappe, S. (May 2012). Magnetoencephalography with a chip-scale atomic magnetometer. Biomedical Optics Express, 3(5), 981–990. https://doi.org/10.1364/BOE.3.000981.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  55. Schneiderman, J. F. (Jan 2014). Information content with low- vs. high-T(c) SQUID arrays in MEG recordings: The case for high-T(c) SQUID-based MEG. Journal of Neuroscience Methods, 222, 42–46. https://doi.org/10.1016/j.jneumeth.2013.10.007.

    CrossRef  PubMed  Google Scholar 

  56. Schultze, V., Schillig, B., IJsselsteijn, R., Scholtes, T., Woetzel, S., & Stolz, R. (Mar 2017). An optically pumped magnetometer working in the light-shift dispersed mz mode. Sensors, 17(3), 561.

    CrossRef  PubMed Central  Google Scholar 

  57. Sheng, D., Li, S., Dural, N., & Romalis, M. V. (Apr 2013). Subfemtotesla scalar atomic magnetometry using multipass cells. Physical Review Letters, 110(16), 160802.

    CrossRef  CAS  PubMed  Google Scholar 

  58. Slocum, R. E. (Feb 1970). Advances in optically pumped he4 magnetometers : Resonance and nonresonance techniques. Revue de Physique Appliquée, 5(1), 109–112.

    CrossRef  Google Scholar 

  59. Slocum, R. E., & Reilly, F. N. (Jan 1963). Low field helium magnetometer for space applications. IEEE Transactions on Nuclear Science, 10(1), 165–171.

    CrossRef  Google Scholar 

  60. Slocum, R. E., & Marton, B. (Sep 1973). Measurement of weak magnetic fields using zero-field parametric resonance in optically pumped He4. IEEE Transactions on Magnetics, 9(3), 221–226.

    CrossRef  CAS  Google Scholar 

  61. Taulu, S., Kajola, M., & Simola, J. (2004). Suppression of interference and artifacts by the Signal Space Separation Method. Brain Topogr, 16(4), 269–275.

    CrossRef  PubMed  Google Scholar 

  62. Taulu, S., Simola, J., & Kajola, M. (Oct 2005). Applications of the signal space separation method. IEEE Transactions on Signal Processing, 53, 3359–3372. https://doi.org/10.1109/TSP.2005.853302.

    CrossRef  Google Scholar 

  63. Tierney, T. M., Holmes, N., Mellor, S., López, J. D., Roberts, G., Hill, R. M., Boto, E., Leggett, J., Shah, V., Brookes, M. J., Bowtell, R., & Barnes, G. R. (May 2019). Optically pumped magnetometers: From quantum origins to multi-channel magnetoencephalography. NeuroImage, 199, 598–608.

    CrossRef  PubMed  Google Scholar 

  64. Weis, A., Wurster, J., & Kanorsky, S. I. (Apr 1993). Quantitative interpretation of the nonlinear faraday effect as a Hanle effect of a light-induced birefringence. JOSA B, 10(4), 716–724.

    CrossRef  CAS  Google Scholar 

  65. Weis, A., Bison, G., & Pazgalev, A. S. (Sep 2006). Theory of double resonance magnetometers based on atomic alignment. Physical Review A, 74(3), 033401.

    CrossRef  CAS  Google Scholar 

  66. Zachary, J. D. (2017). Advances in fetal magnetocardiography using SERF atomic magnetometers. Ph.D. thesis, University of Wisconsin–Madison.

    Google Scholar 

  67. Zhang, G., Huang, S., & Lin, Q. (Dec 2018). Magnetoencephalography using a compact multichannel atomic magnetometer with pump-probe configuration. AIP Advances, 8(12), 125028.

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Labyt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Palacios-Laloy, A., Le Prado, M., Labyt, E. (2022). Tri-axial Helium-4 Optically Pumped Magnetometers for MEG. In: Labyt, E., Sander, T., Wakai, R. (eds) Flexible High Performance Magnetic Field Sensors. Springer, Cham. https://doi.org/10.1007/978-3-031-05363-4_6

Download citation