Skip to main content

Small Animal Biomagnetism Applications

  • Chapter
  • First Online:
Flexible High Performance Magnetic Field Sensors

Abstract

The functioning of the human brain, nervous system, and heart is based on the conduction of electrical signals. These electrical signals also create magnetic fields which extend outside the human body. Highly sensitive magnetometers, such as superconducting quantum interference device magnetometers or optically pumped magnetometers, placed outside the human body can detect these biomagnetic fields and provide non-invasive measurements of, e.g. brain activity, nerve impulses, and cardiac activity. Animal models are used widely in medical research, including for disease diagnostics and for drugs testing. We review the topic of biomagnetic recordings on animal models using optically pumped magnetometers and present our experiments on detecting nerve impulses in the frog sciatic nerve and the heartbeat in an isolated guinea pig heart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alem, O., Benison, A. M., Barth, D. S., Kitching, J., & Knappe, S. (2014). Magnetoencephalography of epilepsy with a microfabricated atomic magnetrode. Journal of Neuroscience, 34, 14324.

    Article  CAS  Google Scholar 

  2. Alem, O., et al. (2015). Fetal magnetocardiography measurements with an array of microfabricated optically pumped magnetometers. Physics in Medicine and Biology, 60, 4797.

    Article  Google Scholar 

  3. Allred, J. C., Lyman, R. N., Kornack, T. W., & Romalis, M. V. (2002). High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation. Physical Review Letters, 89, 130801.

    Article  CAS  Google Scholar 

  4. Arai, K., Kuwahata, A., Nishitani, D., et al. (2021). Millimetre-scale magnetocardiography of living rats using a solid-state quantum sensor. arXiv:2105.11676.

    Google Scholar 

  5. Balabas, M. V., Karaulanov, T., Ledbetter, M. P., & Budker, D. (2010). Polarized alkali-metal vapor with minute-long transverse spin-relaxation time. Physical Review Letters, 105, 070801.

    Article  CAS  Google Scholar 

  6. Balabas, M. V., et al. (2010). High quality anti-relaxation coating material for alkali atom vapor cells. Optics Express, 18(6), 5825.

    Article  CAS  Google Scholar 

  7. Barry, J. F., Turner, M. J., Schloss, J. M., Glenn, D. R., Song, Y., Lukin, M. D., Park, H., & Walsworth, R. L. (2016). Single-neuron action potential magnetic sensing. Proceedings of the National Academy of Sciences, 113, 14133.

    Article  CAS  Google Scholar 

  8. Boto, E., et al. (2018). Moving magnetoencephalography towards real-world applications with a wearable system. Nature, 555, 657.

    Article  CAS  Google Scholar 

  9. Boto, E., Seedat, Z. A., Holmes, N., Leggett, J., Hill, R. M., Roberts, G., Shah, V., Fromhold, T. M., Mullinger, K. J., Tierney, T. M., Barnes, G. R., Bowtell, R., & Brookes, M. J. (2019). Wearable neuroimaging: Combining and contrasting magnetoencephalography and electroencephalography. NeuroImage, 201, 116099.

    Article  Google Scholar 

  10. Brisinda, D., Caristo, M. E., & Fenici, R. (2006). Contactless magnetocardiographic mapping in anesthetized wistar rats: evidence of age-related changes of cardiac electrical activity. American Journal of Physiology-Heart and Circulatory Physiology, 291, H368.

    Article  CAS  Google Scholar 

  11. Brisinda, D., Caristo, M. E., & Fenici, R. (2007). Longitudinal study of cardiac electrical activity in anesthetized guinea pigs by contactless magnetocardiography. Physiological Measurement, 28, 773.

    Article  Google Scholar 

  12. Brisinda, D., Meloni, A. M., & Fenici, R. (2004). Magnetocardiographic differences of ventricular repolarization parameters between Wistar rats and guinea pigs. Neurology and Clinical Neurophysiology, 9.

    Google Scholar 

  13. Bu, Y., et al. (2022). Peripheral nerve magnetoneurography with optically pumped magnetometers. Frontiers in Physiology, 13, 798376.

    Article  Google Scholar 

  14. Budker, D., & Jackson Kimball, D. F. (eds.) (2013). Optical magnetometry. Cambridge University Press.

    Google Scholar 

  15. Budker, D., & Romalis, M. (2007). Optical magnetometry. Nature Physics, 3, 227.

    Article  CAS  Google Scholar 

  16. Christianson, G. B., Chait, M., de Cheveigné, A., & Linden, J. F. (2014). Auditory evoked fields measured noninvasively with small-animal meg reveal rapid repetition suppression in the guinea pig. Journal of Neurophysiology, 112, 3053.

    Article  Google Scholar 

  17. Eswaran, H., Escalona-Vargas, D., Bolin, E. H., Wilson, J. D., & Lowery, C. L. (2017). Fetal magnetocardiography using optically pumped magnetometers: a more adaptable and less expensive alternative? Prenatal Diagnosis, 37(2), 193–196.

    Article  Google Scholar 

  18. Feldkamp, J. R. (2015). Single-coil magnetic induction tomographic three-dimensional imaging. Journal of Medical Imaging (Bellingham), 2, 013502.

    Article  Google Scholar 

  19. Fourcault, W., Romain, R., Le Gal, G., Bertrand, F., Josselin, V., Le Prado, M., Labyt, E., & Palacios-Laloy, A. (2021). Helium-4 magnetometers for room-temperature biomedical imaging: toward collective operation and photon-noise limited sensitivity. Optics Express, 29, 14467.

    Article  CAS  Google Scholar 

  20. Griffiths, H. (2001). Magnetic induction tomography. Measurement Science and Technology, 12, 1126.

    Article  CAS  Google Scholar 

  21. Griffiths, H., Stewart, W. R., & Gough, W. (1999). Magnetic induction tomography: A measuring system for biological tissues. Annals of the New York Academy of Sciences, 873, 335.

    Article  CAS  Google Scholar 

  22. Hill, R. M., Boto, E., Holmes, N., et al. (2019). A tool for functional brain imaging with lifespan compliance. Nature Communications, 10, 4785.

    Article  Google Scholar 

  23. Jensen, K. (2011). Quantum information, entanglement and magnetometry with macroscopic gas samples and non-classical light. Ph.D. thesis, University of Copenhagen.

    Google Scholar 

  24. Jensen, K., et al. (2016). Non-invasive detection of animal nerve impulses with an atomic magnetometer operating near quantum limited sensitivity. Scientific Reports, 6, 29638.

    Article  CAS  Google Scholar 

  25. Jensen, K., Skarsfeldt, M. A., Stærkind, H., Arnbak, J., Balabas, M. V., Olesen, S. P., Bentzen, B. H., & Polzik, E. S. (2018). Magnetocardiography on an isolated animal heart with a room-temperature optically pumped magnetometer. Scientific Reports, 8, 16218.

    Article  Google Scholar 

  26. Jensen, K., Zugenmaier, M., Arnbak, J., Stærkind, H., Balabas, M. V., & Polzik, E. S. (2019). Detection of low-conductivity objects using eddy current measurements with an optical magnetometer. Physical Review Research, 1, 033087.

    Article  CAS  Google Scholar 

  27. Julsgaard, B., Sherson, J., Sørensen, J. L., & Polzik, E. S. (2003). Characterizing the spin state of an atomic ensemble using the magneto-optical resonance method. Journal of Optics B: Quantum and Semiclassical Optics, 6, 5.

    Article  Google Scholar 

  28. Kominis, I. K., Kornack, T. W., Allred, J. C., & Romalis, M. V. (2003). A subfemtotesla multichannel atomic magnetometer. Nature, 422, 596.

    Article  CAS  Google Scholar 

  29. Korjenevsky, A., Cherepenin, V., & Sapetsky, S. (2000). Magnetic induction tomography: experimental realization. Physiological Measurement, 21, 89.

    Article  CAS  Google Scholar 

  30. Krauter, H., Muschik, C. A., Jensen, K., Wasilewski, W., Petersen, J. M., Cirac, J. I., & Polzik, E. S. (2011). Entanglement generated by dissipation and steady state entanglement of two macroscopic objects. Physical Review Letters, 107, 080503.

    Article  Google Scholar 

  31. Le Sage, D., Arai, K., Glenn, D., DeVience, S. J., Pham, L. M., Rahn-Lee, L., Lukin, M. D., Yacoby, A., Komeili, A., & Walsworth, R. L. (2013). Optical magnetic imaging of living cells. Nature, 496, 486.

    Article  Google Scholar 

  32. Lindseth, B., Schwindt, P., Kitching, J., Fischer, D., & Shusterman, V. (2007). Non-contact measurement of cardiac electromagnetic field in mice by use of a microfabricated atomic magnetometer. In 2007 Computers in Cardiology (p. 443).

    Google Scholar 

  33. Ma, L., & Soleimani, M. (2017). Magnetic induction tomography methods and applications: a review. Measurement Science and Technology, 28, 072001.

    Article  Google Scholar 

  34. Marmugi, L., & Renzoni, F. (2016). Optical magnetic induction tomography of the heart. Scientific Reports, 6, 23962.

    Article  CAS  Google Scholar 

  35. Miyamoto, M., Kawai, J., Adachi, Y., Haruta, Y., & Komamura, K., Uehara, G. (2008). Development of an MCG/MEG system for small animals and its noise reduction methods. Journal of Physics: Conference Series, 97, 012258.

    Google Scholar 

  36. QuSpin. www.quspin.com, accessed: 15th July 2022.

  37. Schellpfeffer, M. A., Strasburger, J. F., Baffa, O., Strand, S. A., Lutter, W., Phan, T., & Wakai, R. T. (2020). Dynamics of the use of magnetocardiography in the study of the cardiac conduction system of the chick embryo. Birth Defects Research, 112, 1825.

    Article  CAS  Google Scholar 

  38. Sutter, J. U., Lewis, O., Robinson, C., McMahon, A., Boyce, R., Bragg, R., Macrae, A., Orton, J., Shah, V., Ingleby, S. J., Griffin, P. F., & Riis, E. (2020). Recording the heart beat of cattle using a gradiometer system of optically pumped magnetometers. Computers and Electronics in Agriculture, 177, 105651.

    Article  Google Scholar 

  39. Taylor, J., Cappellaro, P., Childress, L., Jiang, L., Budker, D., Hemmer, P. R., Yacoby, A., Walsworth, R., & Lukin, M. D. (2008). High-sensitivity diamond magnetometer with nanoscale resolution. Nature Physics, 4, 810.

    Article  CAS  Google Scholar 

  40. Wasilewski, W., Jensen, K., Krauter, H., Renema, J. J., Balabas, M. V., & Polzik, E. S. (2010). Quantum noise limited and entanglement-assisted magnetometry. Physical Review Letters, 104, 133601.

    Article  CAS  Google Scholar 

  41. Webb, J., Troise, L., Hansen, N., et al. (2021). Detection of biological signals from a live mammalian muscle using an early stage diamond quantum sensor. Scientific Reports, 11, 2412.

    Article  CAS  Google Scholar 

  42. Wikswo, J. P., Barach, J. P., & Freeman, J. A. (1980). Magnetic field of a nerve impulse: first measurements. Science, 208(4439), 53–55.

    Article  CAS  Google Scholar 

  43. Wyllie, R., Kauer, M., Wakai, R. T., & Walker, T. G. (2012). Optical magnetometer array for fetal magnetocardiography. Optics Letters, 37, 2247.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Novo Nordisk Foundation grant NNF20OC0064182, by the ERC Advanced Grant Quantum-N and by the Villum Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kasper Jensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jensen, K., Bentzen, B.H., Polzik, E.S. (2022). Small Animal Biomagnetism Applications. In: Labyt, E., Sander, T., Wakai, R. (eds) Flexible High Performance Magnetic Field Sensors. Springer, Cham. https://doi.org/10.1007/978-3-031-05363-4_3

Download citation

Publish with us

Policies and ethics