Skip to main content

An Intensive Approach to the Renewable Energy Recovery from Agro Waste—A Review

  • Conference paper
  • First Online:
Environmental Pollution and Natural Resource Management

Abstract

Agricultural residues are wastes generated whilst growing and processing these goods. The residues of agriculture are produced from numerous activities like cultivation, aquaculture, and livestock production. Wastes generated in the field or after processing in industries are multiphase and multicomponent. All three forms, liquid, solid, and gaseous wastes are generated by the agriculture sector which tends to pollute soil, water, and air. Waste causing environment degrading ability needs immediate attention. For ages, food and agro-wastes were either burnt or allowed to decompose in fields, but this can be possibly harmful to the environment. With the progress in technology, new approaches concerning their utilization, reuse, and processing need to be established to permit its sustainable utilization of residues and reduce pollution. Agricultural wastes are potential renewable energy resources. It is important to develop proper waste management strategies as it is the only best solution to have a healthy environment. In this paper, we discussed various strategies and technologies introduced to manage and utilize the waste that is generated in the agricultural field or after processing agriculture-based products. Appropriate management of waste is also beneficial in deriving out the essential useful product from the waste.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kumar, A., Kumar, K., Kaushik, N., Sharma, S., and Mishra, S.: Renewable energy in India: current status and future potentials. Renewable and sustainable energy reviews. Volume 14(8). (2010) 2434–2442

    Google Scholar 

  2. Bhattacharyya, S. C.: Shaping a sustainable energy future for India: Management challenges. Energy policy. Volume 38(8). (2010) 4173-4185. https://doi.org/10.1016/j.enpol.2010.03.045

  3. Garg, A., Bhattacharya, S., Shukla, P. R., and Dadhwal, V. K.: Regional and sectoral assessment of greenhouse gas emissions in India. Atmospheric Environment. Volume 35(15). (2001) 2679–2695

    Google Scholar 

  4. Bisht, A., Kamboj, N., Kamboj, V. and Bisht, A.: A review on the role of emerging anthropogenic activities in environmental degradation and emphasis on their mitigation. Archives of Agriculture and Environmental Science. Volume 5(3). (2020) 419–425, https://doi.org/10.26832/24566632.2020.0503025

  5. Kamboj, N., Bisht, A., Kamboj, V. and Bisht, A.: Leachate disposal induced groundwater pollution: A threat to drinking water scarcity and its management. In: Advances in Environmental Pollution Management: Wastewater Impacts and Treatment Technologies, Volume 1. (2020) 54–76. https://doi.org/10.26832/aesa-2020-aepm-05

  6. Tiewsoh, L. S., Jirásek, J., and Sivek, M.: Electricity generation in India: Present state, future outlook and policy implications. Energies. Volume 12(7). (2019) 1361. https://doi.org/10.3390/en12071361

  7. Green, R.: Electricity transmission pricing: an international comparison. Utilities Policy. Volume 6(3). (1997) 177–184

    Google Scholar 

  8. India Energy Portal: http://www.indiaenergyportal.org/overview_detail.php

  9. Faranda, R., Pievatolo, A., and Tironi, E.: Load shedding: A new proposal. IEEE Transactions on Power Systems. Volume 22(4). (2007) 2086–2093

    Google Scholar 

  10. Ministry of Power of India 2017. http://www.mop.gov.in

  11. Wangchuk, R.B. :23 GW of Potential and Growing: How Ladakh Plans to Lead India’s Solar Charge! (2019). https://www.thebetterindia.com/201532/how-much-solar-power-india-rates-cost-ladakh-industry-information/

  12. Ramanathan, V., and Xu, Y.: The Copenhagen Accord for limiting global warming: Criteria, constraints, and available avenues. Proceedings of the National Academy of Sciences. Volume 107(18). (2010) 8055–8062. https://doi.org/10.1073/pnas.1002293107

  13. Mueller, U. G., Gerardo, N. M., Aanen, D. K., Six, D. L., and Schultz, T. R.: The evolution of agriculture in insects. Annual Review of Ecology, Evolution, and Systematics. Volume 36. (2005) 563–595. https://doi.org/10.1146/annurev.ecolsys.36.102003.152626

  14. Arjun, K. M.: Indian agriculture-status, importance and role in Indian economy. International Journal of Agriculture and Food Science Technology. Volume 4(4). (2013) 343–346.

    Google Scholar 

  15. Dandekar, V. M.: The Indian economy. Agriculture. Sage Publications.1. (1994) 1947–92

    Google Scholar 

  16. Pathak, N.: Contribution of agriculture in the development of Indian economy. The Journal of Indian Management and Strategy. Volume 14(1). (2009) 52–57

    Google Scholar 

  17. Loehr, R.: Agricultural waste management: problems, processes, and approaches. Elsevier. (2012)

    Google Scholar 

  18. Litchfield, J. H. Food Biotechnology. Volume 1(1). (1987) 29

    Google Scholar 

  19. Prasad, R., and Power, J. F.: Crop residue management. Advances in Soil Science. Springer, New York. (1991) 205–251

    Google Scholar 

  20. Satlewal, A., Agrawal, R., Bhagia, S., Das, P. and Ragauskas, A. J.: Rice straw as a feedstock for biofuels: availability, recalcitrance, and chemical properties. Biofuels. Bioproducts and Biorefining. Volume 12(1). (2018) 83–107. https://doi.org/10.1002/bbb.1818

  21. Kumar, S., Paritosh, K., Pareek, N., Chawade, A., Vivekanand, V.: De-construction of major Indian cereal crop residues through chemical pretreatment for improved bio-gas production: an overview. Renewable and Sustainable Energy Reviews. Volume 90. (2018) 160170

    Google Scholar 

  22. Pattanaik, L., Pattnaik, F., Saxena, D. K., and Naik, S. N.: Biofuels from agricultural wastes. In Second and Third Generation of Feedstocks. Volume (2019) 103–142

    Google Scholar 

  23. Dhar, H., Kumar, S., and Kumar, R.: A review on organic waste to energy systems in India. Bioresource technology. Volume 245. (2017) 1229–1237. https://doi.org/https://doi.org/10.1016/j.biortech.2017.08.159

  24. Paul EA, Clark FE.: Soil microbiology and biochemistry. Academic Press, San Diego. (1989)

    Google Scholar 

  25. Tian, G., Brussaard, L., & Kang, B. T.: Breakdown of plant residues with contrasting chemical compositions under humid tropical conditions: effects of earthworms and millipedes. Soil Biology and Biochemistry. Volume 27(3). (1995) 277–280

    Google Scholar 

  26. Goering, H. K., & Van Soest, P. J.: Forage fiber analyses (apparatus, reagents, procedures, and some applications). US Agricultural Research Service. (1970)

    Google Scholar 

  27. Stout JD, Goh KM and Rafter TA.: Chemistry and turnover of naturally occurring resistant organic compounds in soil. Soil biochemistry. Volume 5. (1981) 1–73

    Google Scholar 

  28. Minderman, G.: Addition, decomposition and accumulation of organic matter in forests. The Journal of Ecology. (1968) 355–362.

    Google Scholar 

  29. Jenkinson, D. S.: Studies on the decomposition of plant material in soil. V. The effects of plant cover and soil type on the loss of carbon from14c labelled ryegrass decomposing under field conditions. Journal of Soil Science. Volume 28(3). (1977) 424–434

    Google Scholar 

  30. Mellilo, J. M., Aber, J. D., Linkins, A. E., Ricca, A., Fry, B., & Nadelhiffer, K. J.: Carbon and nitrogen dynamics along a decay continuum: Plant litter to soil organic matter. Physio-Chemical Characterization of Plant Residues for Industrial and Feed Use. (1989)

    Google Scholar 

  31. Agamuthu, P.: Challenges and opportunities in agro-waste management: An Asian perspective. In Inaugural meeting of first regional 3R forum in Asia. (2009) 11–12

    Google Scholar 

  32. Girotto, F., Alibardi, L., and Cossu, R.: Food waste generation and industrial uses: a review. Waste management. Volume 45. (2015) 32–41. https://doi.org/10.1016/j.wasman.2015.06.008

  33. Innes, R.: The economics of livestock waste and its regulation. American Journal of Agricultural Economics, Volume 82(1). (2000) 97–117

    Google Scholar 

  34. Gunaseelan, V.N.: Biochemical methane potential of fruits and vegetable solid waste feedstocks. Biomass and bioenergy. Volume 26(4). (2004) 389–399. https://doi.org/10.1016/j.biombioe.2003.08.006

  35. Cutler, H. G., and Cutler, S. J. (Eds.).: Biologically active natural products: agrochemicals. CRC Press. (1999)

    Google Scholar 

  36. Frosch, R. A.Industrial ecology: Minimizing the impact of industrial waste. Physics Today, Volume 47(11). (1994) 63–68

    Google Scholar 

  37. Bharti, M., Kamboj, N. and Kamboj, V.:Effect of untreated wastewater on soil quality: A case study in Ranipur Rao watershed in Haridwar region (Uttarakhand), India. In: Advances in Environmental Pollution Management: Wastewater Impacts and Treatment Technologies. Volume 1. (2020) 145–157

    Google Scholar 

  38. Sadaka, S., and Boateng, A.: A. Pyrolysis and bio-oil. Cooperative Extension Service, University of Arkansas, US Department of Agriculture and county governments cooperating. (2009)

    Google Scholar 

  39. Ma, Y., Shen, Y., and Liu, Y.: State of the art of straw treatment technology: challenges and solutions forward. Bioresource Technology. (2020) 123656. https://doi.org/10.1016/j.biortech.2020.123656

  40. Russ, W. and Meyer-Pittroff, R.: Utilizing waste products from the food production and processing industries. Critical Reviews in Food Science and Nutrition. Volume 44(1). (2004) 57–62. https://doi.org/10.1080/10408690490263783

  41. Visioli, L. J., Enzweiler, H., Kuhn, R. C., Schwaab, M., and Mazutti, M. A.: Recent advances on biobutanol production. Sustainable chemical processes. Volume 2(1). (2014) 15

    Google Scholar 

  42. Skaggs, R. L., Coleman, a. M., Seiple, T. E., and Milbrandt, A. R.: Waste-to-energy biofuel production potential for selected feedstocks in the conterminous united states. Renewable and sustainable energy reviews. Volume 82. (2018) 2640–2651. https://doi.org/10.1016/j.rser.2017.09.107

  43. Rodríguez, L. A., Toro, M. E., Vazquez, F., Correa-Daneri, M. L., Gouiric, S. C., and Vallejo, M. D.: Bioethanol production from grape and sugar beet pomaces by solid-state fermentation. International Journal of Hydrogen Energy. Volume 35(11). (2010) 5914–5917

    Google Scholar 

  44. Zinoviev, S., Arumugam, S. and Miertus, S.: Biofuel Production Technologies. Dubrovik, Croatia. (2007)

    Google Scholar 

  45. Qambrani, N. A., Rahman, M. M., Won, S., Shim, S., and Ra, C.: Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review. Renewable and Sustainable Energy Reviews. Volume 79. (2017) 255–273. https://doi.org/10.1016/j.rser.2017.05.057

  46. Koukios, E., Koullas, D., Koukios, I. D., and Avgerinos, E.: Critical parameters for optimal biomass refineries: the case of biohydrogen. Clean Technologies and Environmental Policy. Volume 12(2). (2010) 147–151. https://doi.org/10.1007/s10098-009-0239-y

  47. Alam, M. N. H. Z., Adrus, N., Wahab, M. F. A., Kamaruddin, M. J., and Sani, M. H.:Utilization of Agro-Waste as Carbon Source for Biohydrogen Production: Prospect and Challenges in Malaysia. In Valorisation of Agro-industrial Residues Biological Approaches. Volume 1. (2020) 131–147. Springer, Cham

    Google Scholar 

  48. Kozlov, N. K., Natashina, U. A., Tamarov, K. P., Gongalsky, M. B., Solovyev, V. V., Kudryavtsev, A. A., ... and Osminkina, L. A.: Recycling of silicon: from industrial waste to biocompatible nanoparticles for nanomedicine. Materials Research Express. Volume 4(9). (2017) 095026

    Google Scholar 

  49. Hongzhang, C., and Liying, L.: Unpolluted fractionation of wheat straw by steam explosion and ethanol extraction. Bioresource technology. Volume 98(3). (2007) 666–676

    Google Scholar 

  50. Bharti, M. and Kamboj, N.: Occurrence and diversity of mycofloral population in soil of two different land use types in Haridwar region (Uttarakhand), India. Journal of Advance Scientific Research. Volume 11(1). (2020) 208–214

    Google Scholar 

  51. Christy, P. M., Gopinath, L. R., and Divya, D.: A review on anaerobic decomposition and enhancement of biogas production through enzymes and microorganisms. Renewable and Sustainable Energy Reviews. Volume 34. (2014) 167–173. https://doi.org/10.1016/j.rser.2014.03.010

  52. Zhang, N. N., Xu, D. P., and Li, H.: Analysis on resource recovery of benzene/ethanol extractives of fresh Santalum album leaves in autumn. (2009) In 3rd International Conference on Bioinformatics and Biomedical Engineering. (2009) 1–3. https://doi.org/10.1109/ICBBE.2009.5162362

  53. Demirbas, A.: Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. Journal of analytical and applied pyrolysis. Volume 72(2). (2004) 243–248. https://doi.org/10.1016/j.jaap.2004.07.003

  54. Westendorf, M. L. (Ed.). Food waste to animal feed. John Wiley and Sons. (2000)

    Google Scholar 

  55. Haxo, H.E. and Mehta, P.K.:Ground rice hull ash as a filler for rubber. Rubber chemistry and technology. Volume 48 (2). (1975) 271-288

    Google Scholar 

  56. Mehta, P. K., and Pitt, N.: Energy and industrial materials from crop residues. Resource Recovery and Conservation, Volume 2(1). (1976) 23–38

    Google Scholar 

  57. Garland, J. L., Mackowiak, C. L., and Sager, J. C.: Hydroponic crop production using recycled nutrients from inedible crop residues. SAE Transactions. (1993) 1103–1110

    Google Scholar 

  58. Mueller, U. G., Gerardo, N. M., Aanen, D. K., Six, D. L., and Schultz, T. R.: The evolution of agriculture .in insects. Annual Review of Ecology, Evolution, and Systematics. Volume 36. (2005) 563–595. https://doi.org/10.1146/annurev.ecolsys.36.102003.152626

  59. Gomez-Tovar, F., Celis, L. B., Razo-Flores, E., and Alatriste-Mondragón, F.: Chemical and enzymatic sequential pretreatment of oat straw for methane production. Bioresource technology. Volume 116. (2012) 372–378

    Google Scholar 

  60. Strayer, R. F., Finger, B. W., and Alazraki, M. P.: Evaluation of an anaerobic digestion system for processing CELSS crop residues for resource recovery. Advances in Space Research. Volume 20(10). (1997) 2009–2015

    Google Scholar 

  61. Shen, J., Huang, J., Ruan, H., Wang, J., and Van der Bruggen, B. :Techno-economic analysis of resource recovery of glyphosate liquor by membrane technology. Desalination. Volume 342. (2014) 118–125. https://doi.org/10.1016/j.desal.2013.11.041

  62. Raut, S., Ralegaonkar, R., and Mandavgane, S.: Utilization of recycle paper mill residue and rice husk ash in production of light weight bricks. Archives of civil and mechanical engineering. Volume 13. (2013) 269–275. https://doi.org/10.1016/j.acme.2012.12.006

  63. Jha, M. K., Lee, J. C., Kim, M. S., Jeong, J., Kim, B. S., and Kumar, V.: Hydrometallurgical recovery/recycling of platinum by the leaching of spent catalysts: A review. Hydrometallurgy. Volume 133. (2013) 23–32. https://doi.org/10.1016/j.hydromet.2012.11.012

  64. Zhu, L., Dong, Y., Li, L., Liu, J., and You, S. J.: Coal fly ash industrial waste recycling for fabrication of mullite-whisker-structured porous ceramic membrane supports. RSC advances. Volume 5(15). (2015) 11163–11174

    Google Scholar 

  65. Piana, G., Ricciardi, M., Bella, F., Cucciniello, R., Proto, A., and Gerbaldi, C.: Poly (glycidyl ether) s recycling from industrial waste and feasibility study of reuse as electrolytes in sodium-based batteries. Chemical Engineering Journal. Volume 382. (2020) 122934. https://doi.org/10.1016/j.cej.2019.122934

  66. Canda, L., Heput, T., and Ardelean, E.: Methods for recovering precious metals from industrial waste. In IOP Conference Series: Materials Science and Engineering. Volume 106(1). (2016) 12–20

    Google Scholar 

  67. Treffry-Goatley, K., and Gilron, J.: The application of nanofiltration membranes to the treatment of industrial effluent and process streams. Filtration and separation. Volume 30(1). (1993) 63–54

    Google Scholar 

  68. Pelino, M., Cantalini, C., and Rincon, J. M.: Preparation and properties of glass-ceramic materials obtained by recycling goethite industrial waste. Journal of Materials Science. Volume 32(17). (1997) 4655–4660. https://doi.org/10.1023/A:1018602224392

  69. Mojumdar, A., and Deka, J.: Recycling agro-industrial waste to produce amylase and characterizing amylase–gold nanoparticle composite. International Journal of Recycling of Organic Waste in Agriculture. Volume 8(1). (2019) 263–269. https://doi.org/10.1007/s40093-019-00298-4

  70. Bonmatı́, A., and Flotats, X.: Air stripping of ammonia from pig slurry: characterisation and feasibility as a pre-or post-treatment to mesophilic anaerobic digestion. Waste management. Volume 23(3). (2003) 261–272. https://doi.org/10.1016/S0956-053X(02)00144-7

  71. Chantigny, M.H., Angers, D.A., Belanger, G., Rochette, P., Eriksen-Hamel, N., Bittman, S.,Buckley, K., Masse, D., Gasser, M.O.: Yield and nutrient export of grain corn fertilized with raw and treated liquid swine manure. Agronomy Journal. Volume 100(5). (2008) 1303–1309. https://doi.org/10.2134/agronj2007.0361

  72. De Vrieze, J., Colica, G., Pintucci, C., Sarli, J., Pedizzi, C., Willeghems, G., ... and Spiller, M.: Resource recovery from pig manure via an integrated approach: a technical and economic assessment for full-scale applications. Bioresource technology, Volume 272. (2019) 582–593. https://doi.org/10.1016/j.biortech.2018.10.024

  73. Gong, W., Li, W., and Liang, H. :Application of A/O‐MBR for treatment of digestate from anaerobic digestion of cow manure. Journal of Chemical Technology and Biotechnology, Volume 85(10). (2010) 1334–1339. https://doi.org/10.1002/jctb.2437

  74. Zhang, Z., Xu, Z., song, X., Zhang, B., Li, G., Huda, N., and Luo, W. :Membrane processes for resource recovery from anaerobically digested livestock manure effluent: opportunities and challenges. Current pollution reports. (2020) 1–14

    Google Scholar 

  75. Waqas, M., Almeelbi, T., and Nizami, A. S.: Resource recovery of food waste through continuous thermophilic in-vessel composting. Environmental Science and Pollution Research. Volume 25(6). (2018) 5212–5222. https://doi.org/10.1007/s11356-017-9358-x

  76. Adi, A.J., Noor, Z. M.: Waste recycling: Utilization of coffee grounds and kitchen waste in vermicomposting. Bioresource Technology, Volume 100(2). (2009) 1027–1030. https://doi.org/10.1016/j.biortech.2008.07.024

Download references

Acknowledgements

The authors are highly grateful to the Department of Zoology and Environmental Science, Gurukula Kangri Vishwavidyalaya, Haridwar, India for providing infrastructural facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin Kamboj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bisht, A., Kamboj, N., Bisht, A., Kamboj, V., Bharti, M. (2022). An Intensive Approach to the Renewable Energy Recovery from Agro Waste—A Review. In: Bahukhandi, K.D., Kamboj, N., Kamboj, V. (eds) Environmental Pollution and Natural Resource Management . Springer Proceedings in Earth and Environmental Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-05335-1_2

Download citation

Publish with us

Policies and ethics