Skip to main content

Image-Based Surgery: Treating Fibroids You Can’t See

  • Chapter
  • First Online:
  • 402 Accesses

Abstract

Improvements in imaging technologies have harnessed unique opportunities to supplement surgical techniques in enhancing surgical outcomes. Laparoscopic ultrasound has provided a unique opportunity to find and remove intramural fibroids that would have either been missed or forced the surgeon to commit to an open approach. The use of fluorescent dye creates improved contrast between normal and abnormal tissue and opens a whole new arena for tagged particles that can attach to distinct pathologies of interest to help in its removal. As MRI technology continues to evolve, opportunities for creating 3D models for preoperative surgical practice and improved preoperative guidance will continue to prepare the surgeon in providing an individualized approach to their patient.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hackmann WD. Underwater acoustics before the first world war. In: Seek and strike. London: Unipub; 1984. p. 1–10.

    Google Scholar 

  2. Newman PG, Rozycki GS. The history of ultrasound. Surg Clin North Am. 1998;78(2):179–95.

    Article  CAS  PubMed  Google Scholar 

  3. Hackmann WD. Introduction. In: Seek and strike. London: Unipub; 1984. p. xxiv–xv.

    Google Scholar 

  4. Hackmann WD. Underwater acoustics before the first world war. In: Seek and strike. London: Unipub; 1984. p. 73–95.

    Google Scholar 

  5. White DN. Neurosonology pioneers. Ultrasound Med Biol. 1988;14(7):541–61.

    Article  CAS  PubMed  Google Scholar 

  6. Meire HB, Farrant P. An historical review. In: Basic ultrasound. Wiley-Blackwell; 1995. p. 1–7.

    Google Scholar 

  7. Wells P. Developments in medical ultrasonics. World Med Electron. 1966;4:2721.

    Google Scholar 

  8. Ludwig GD, Struthers FW. Detecting gallstones with ultrasound. Electronics. 1950;23:172–8.

    Google Scholar 

  9. Ludwig GD, Struthers FW. The velocity of sound through tissues and the acoustic impedance of tissues. J Acoust Soc Am. 1950;22:862–6.

    Article  Google Scholar 

  10. Wild JJ. The use of ultrasonic pulses for the measurement of biologic tissues and the detection of tissue density changes. Surgery. 1950;27(2):183–8.

    CAS  PubMed  Google Scholar 

  11. Wild JJ, Reid JM. Diagnostic use of ultrasound. Br J Phys Med. 1956;19(11):248–57; passim.

    CAS  PubMed  Google Scholar 

  12. Wild JJ, Reid JM. Further pilot echographic studies on the histologic structure of tumors of the living intact human breast. Am J Pathol. 1952;28(5):839–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Goldberg BB, Gramiak R, Freimanis AK. Early history of diagnostic ultrasound: the role of American radiologists. AJR Am J Roentgenol. 1993;160(1):189–94.

    Article  CAS  PubMed  Google Scholar 

  14. Donald I. Sonar–the story of an experiment. Ultrasound Med Biol. 1974;1(2):109–17.

    Article  CAS  PubMed  Google Scholar 

  15. Schulman JD, et al. Outpatient in vitro fertilization using transvaginal ultrasound-guided oocyte retrieval. Obstet Gynecol. 1987;69(4):665–8.

    CAS  PubMed  Google Scholar 

  16. Strickler RC, et al. Ultrasound guidance for human embryo transfer. Fertil Steril. 1985;43(1):54–61.

    Article  CAS  PubMed  Google Scholar 

  17. Woolcott R, Stanger J. Potentially important variables identified by transvaginal ultrasound-guided embryo transfer. Hum Reprod. 1997;12(5):963–6.

    Article  CAS  PubMed  Google Scholar 

  18. Tang OS, et al. Ultrasound-guided embryo transfer: a prospective randomized controlled trial. Hum Reprod. 2001;16(11):2310–5.

    Article  CAS  PubMed  Google Scholar 

  19. Lin PC, Thyer A, Soules MR. Intraoperative ultrasound during a laparoscopic myomectomy. Fertil Steril. 2004;81(6):1671–4.

    Article  PubMed  Google Scholar 

  20. Angioli R, et al. Intraoperative contact ultrasonography during open myomectomy for uterine fibroids. Fertil Steril. 2010;94(4):1487–90.

    Article  PubMed  Google Scholar 

  21. Letterie GS, Catherino WH. A 7.5-MHz finger-grip ultrasound probe for real-time intraoperative guidance during complex reproductive surgical procedures. Am J Obstet Gynecol. 2002;187(6):1588–90.

    Article  PubMed  Google Scholar 

  22. Boni L, et al. Clinical applications of indocyanine green (ICG) enhanced fluorescence in laparoscopic surgery. Surg Endosc. 2015;29(7):2046–55.

    Article  PubMed  Google Scholar 

  23. Alander JT, et al. A review of indocyanine green fluorescent imaging in surgery. Int J Biomed Imaging. 2012;2012:940585.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Baillif S, et al. Retinal fluorescein and indocyanine green angiography and spectral-domain optical coherence tomography findings in acute retinal pigment epitheliitis. Retina. 2011;31(6):1156–63.

    Article  PubMed  Google Scholar 

  25. Mordon S, et al. Indocyanine green: physicochemical factors affecting its fluorescence in vivo. Microvasc Res. 1998;55(2):146–52.

    Article  CAS  PubMed  Google Scholar 

  26. Noura S, et al. Feasibility of a lateral region sentinel node biopsy of lower rectal cancer guided by indocyanine green using a near-infrared camera system. Ann Surg Oncol. 2010;17(1):144–51.

    Article  PubMed  Google Scholar 

  27. Desai ND, et al. A randomized comparison of intraoperative indocyanine green angiography and transit-time flow measurement to detect technical errors in coronary bypass grafts. J Thorac Cardiovasc Surg. 2006;132(3):585–94.

    Article  PubMed  Google Scholar 

  28. Reuthebuch O, et al. Novadaq SPY: intraoperative quality assessment in off-pump coronary artery bypass grafting. Chest. 2004;125(2):418–24.

    Article  PubMed  Google Scholar 

  29. Lim C, et al. Indocyanine green fluorescence imaging in the surgical management of liver cancers: current facts and future implications. J Visc Surg. 2014;151(2):117–24.

    Article  CAS  PubMed  Google Scholar 

  30. Spinoglio G, et al. Real-time near-infrared (NIR) fluorescent cholangiography in single-site robotic cholecystectomy (SSRC): a single-institutional prospective study. Surg Endosc. 2013;27(6):2156–62.

    Article  PubMed  Google Scholar 

  31. Daskalaki D, et al. Indocyanine green (ICG) fluorescent cholangiography during robotic cholecystectomy: results of 184 consecutive cases in a single institution. Surg Innov. 2014;21(6):615–21.

    Article  PubMed  Google Scholar 

  32. Luo S, et al. A review of NIR dyes in cancer targeting and imaging. Biomaterials. 2011;32(29):7127–38.

    Article  CAS  PubMed  Google Scholar 

  33. Practice Committee of the American Society for Reproductive, M. Treatment of pelvic pain associated with endometriosis: a committee opinion. Fertil Steril. 2014;101(4):927–35.

    Article  Google Scholar 

  34. Jayakumaran J, et al. Robotic single-site endometriosis resection using near-infrared fluorescence imaging with indocyanine green: a prospective case series and review of literature. J Robot Surg. 2020;14(1):145–54.

    Article  PubMed  Google Scholar 

  35. Bourdel N, et al. Indocyanine green in deep infiltrating endometriosis: a preliminary feasibility study to examine vascularization after rectal shaving. Fertil Steril. 2020;114(2):367–73.

    Article  CAS  PubMed  Google Scholar 

  36. Van der Zee AG, et al. Sentinel node dissection is safe in the treatment of early-stage vulvar cancer. J Clin Oncol. 2008;26(6):884–9.

    Article  PubMed  Google Scholar 

  37. Buda A, et al. Sentinel lymph node mapping with near-infrared fluorescent imaging using indocyanine green: a new tool for laparoscopic platform in patients with endometrial and cervical cancer. J Minim Invasive Gynecol. 2016;23(2):265–9.

    Article  PubMed  Google Scholar 

  38. Jewell EL, et al. Detection of sentinel lymph nodes in minimally invasive surgery using indocyanine green and near-infrared fluorescence imaging for uterine and cervical malignancies. Gynecol Oncol. 2014;133(2):274–7.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Plante M, et al. Sentinel node mapping with indocyanine green and endoscopic near-infrared fluorescence imaging in endometrial cancer. A pilot study and review of the literature. Gynecol Oncol. 2015;137(3):443–7.

    Article  PubMed  Google Scholar 

  40. How J, et al. Comparing indocyanine green, technetium, and blue dye for sentinel lymph node mapping in endometrial cancer. Gynecol Oncol. 2015;137(3):436–42.

    Article  CAS  PubMed  Google Scholar 

  41. Sayed Aluwee S, et al. Evaluation of pre-surgical models for uterine surgery by use of three-dimensional printing and mold casting. Radiol Phys Technol. 2017;10(3):279–85.

    Article  PubMed  Google Scholar 

  42. Flaxman T, Cooke C, Miguel O, Sheikh A. A review and guide of to creating patient specific 3D printed anatomical models from MRI for benigh gynecologic surgery. 3D Print Med. 2021;7(1):17.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Pessaux P, et al. Robotic duodenopancreatectomy assisted with augmented reality and real-time fluorescence guidance. Surg Endosc. 2014;28(8):2493–8.

    Article  PubMed  Google Scholar 

  44. Marescaux J, et al. Augmented-reality-assisted laparoscopic adrenalectomy. JAMA. 2004;292(18):2214–5.

    CAS  PubMed  Google Scholar 

  45. Pessaux P, et al. Towards cybernetic surgery: robotic and augmented reality-assisted liver segmentectomy. Langenbeck's Arch Surg. 2015;400(3):381–5.

    Article  Google Scholar 

  46. Simpfendorfer T, et al. Augmented reality visualization during laparoscopic radical prostatectomy. J Endourol. 2011;25(12):1841–5.

    Article  PubMed  Google Scholar 

  47. Soler L, et al. Real-time 3D image reconstruction guidance in liver resection surgery. Hepatobiliary Surg Nutr. 2014;3(2):73–81.

    PubMed  PubMed Central  Google Scholar 

  48. Grimson WL, et al. An automatic registration method for frameless stereotaxy, image guided surgery, and enhanced reality visualization. IEEE Trans Med Imaging. 1996;15(2):129–40.

    Article  CAS  PubMed  Google Scholar 

  49. Bourdel N, et al. Augmented reality in gynecologic surgery: evaluation of potential benefits for myomectomy in an experimental uterine model. Surg Endosc. 2017;31(1):456–61.

    Article  PubMed  Google Scholar 

  50. Bourdel N, et al. Use of augmented reality in laparoscopic gynecology to visualize myomas. Fertil Steril. 2017;107(3):737–9.

    Article  PubMed  Google Scholar 

  51. Collins T, et al. Realtime wide-baseline registration of the uterus in laparoscopic videos using multiple texture maps. Berlin, Heidelberg: Springer Berlin Heidelberg; 2013.

    Book  Google Scholar 

  52. Aluwee SA, Kato H, Zhou X, Hara T. Magnetic resonance imaging of uterine fibroids: a preliminary investigation into the usefulness of 3D-rendered images for surgical planning. Springerplus. 2015;4:384.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Moawad G, Tyan P, Louie M. Artificial intelligence and augmented reality in gynecology. Curr Opin Obstet Gynecol. 2019;31(5):345–8.

    Article  PubMed  Google Scholar 

  54. Murugesan YP, et al. A novel rotational matrix and translation vector algorithm: geometric accuracy for augmented reality in oral and maxillofacial surgeries. Int J Med Robot. 2018;14(3):e1889.

    Article  PubMed  Google Scholar 

  55. Vavra P, et al. Recent development of augmented reality in surgery: a review. J Healthc Eng. 2017;2017:457–72.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John C. Petrozza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jiang, V.S., Petrozza, J.C. (2022). Image-Based Surgery: Treating Fibroids You Can’t See. In: Lindheim, S.R., Petrozza, J.C. (eds) Reproductive Surgery. Springer, Cham. https://doi.org/10.1007/978-3-031-05240-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05240-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05239-2

  • Online ISBN: 978-3-031-05240-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics