Skip to main content

Multibody Modeling and Dynamical Analysis of a Fixed-Wing Aircraft

  • 240 Accesses

Part of the Lecture Notes in Networks and Systems book series (LNNS,volume 472)

Abstract

This study is aimed at developing a simplified virtual model capable of simulating the dynamic behavior of a fixed-wing aircraft by applying the multibody approach. The case of an aircraft with simplified aerodynamics, an axial thrust, and without control surfaces is considered. After modeling the aerodynamic actions following a Lagrangian approach, the equations of motion are analytically derived and numerically implemented in a MATLAB computer code to develop a virtual model capable of simulating the dynamic behavior of the aircraft. Finally, the numerical results found are presented and a discussion on the numerical results is provided, paying attention to the Cessna 172 Skyhawk, which is considered as the case study.

Keywords

  • Fixed-wing aircraft
  • Longitudinal flight dynamics
  • Multibody simulation
  • Lagrangian mechanics
  • Cessna 172 skyhawk

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-031-05230-9_8
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-031-05230-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.

References

  1. Fahlstrom, P., Gleason, T.: Introduction to UAV Systems. John Wiley & Sons (2012)

    Google Scholar 

  2. De Simone, M.C., Guida, D.: Control design for an under-actuated UAV model. FMW Transactions 46(4), 443–452 (2018)

    CrossRef  Google Scholar 

  3. Celenta, G., De Simone, M.C.: Retrofitting Techniques for Agricultural Machines, Lecture Notes in Networks and Systems. 128 LNNS, pp. 388–396 (2020)

    Google Scholar 

  4. Rivera, Z.B., De Simone, M.C., Guida, D.: Unmanned ground vehicle modelling in Gazebo/ROS-based environments. Machines 7(2) (2019). art. no. 42

    Google Scholar 

  5. De Simone, M.C., Rivera, Z.B., Guida, D.: Obstacle avoidance system for unmanned ground vehicles by using ultrasonic sensors. Machines 6(2) (2018). art. no. 18

    Google Scholar 

  6. Formato, A., Romano, R., Villecco, F.: A novel device for the soil sterilizing in sustainable agriculture. Lect. Notes Net. Sys. 233, 858-865 (2021). https://doi.org/10.1007/978-3-030-75275-0_94

  7. Salvati, L., d’Amore, M., Fiorentino, A., Pellegrino, A., Sena, P., Villecco, F.: On-road detection of driver fatigue and drowsiness during medium-distance journeys. Entropy 23(2), 135 (2021)

    CrossRef  Google Scholar 

  8. Formato, A., Ianniello, D., Pellegrino, A., Villecco, F.: Vibration-based experimental identification of the elastic moduli using plate specimens of the olive tree. Machines 7(2) (2019). https://doi.org/10.3390/machines7020046 art. no. 46

  9. Sun, X., Liu, H., Song, W., Villecco, F.: Modeling of eddy current welding of rail: three-dimensional simulation. Entropy 22 (2020). art. no.947

    Google Scholar 

  10. Liguori, A., Formato, A., Pellegrino, A., Villecco, F.: Study of tank containers for foodstuffs. Machines 9 (2021). art. no. 44

    Google Scholar 

  11. Sinha, N.K., Ananthkrishnan, N.: Elementary Flight Dynamics with an Introduction to Bifurcation and Continuation Methods. CRC Press (2013)

    Google Scholar 

  12. Sinha, N.K., Ananthkrishnan, N.: Advanced Flight Dynamics with Elements of Flight Control. CRC Press (2017)

    Google Scholar 

  13. Yang, F., Yuan, X.G.: Matlab-based dynamic simulation of aircraft environmental control system. ActaSimulataSystematicaSinica 6 (2002)

    Google Scholar 

  14. Pappalardo, C.M., Lettieri, A., Guida, D.: Identification of a dynamical model of the latching mechanism of an aircraft hatch door using the numerical algorithms for subspace state-space system identification. IAENG Int. J. Appl. Math. 51(2), 346–359 (2021)

    Google Scholar 

  15. Pappalardo, C.M., Manca, A., Guida, D.: A combined use of the multibody system approach and the finite element analysis for the structural redesign and the topology optimization of the latching component of an aircraft hatch door. IAENG Int. J. Appl. Math. 51(1), 175–191 (2021)

    Google Scholar 

  16. Kim, C.W.: Scale Modeling of Cessna, p. 172 (2011)

    Google Scholar 

  17. Smith, R.: Cessna 172: A Pocket History. Amberley Publishing Limited (2010)

    Google Scholar 

  18. Sicilia, M., De Simone, M.C.: Development of an energy recovery device based on the dynamics of a semi-trailer. Lect. Notes Mech. Eng., 74–84 (2020)

    Google Scholar 

  19. Manrique-Escobar, C.A., Pappalardo, C.M., Guida, D.: A multibody system approach for the systematic development of a closed-chain kinematic model for two-wheeled vehicles. Machines 9(11), 245 (2021)

    CrossRef  Google Scholar 

  20. Manrique-Escobar, C.A., Pappalardo, C.M., Guida, D.: On the analytical and computational methodologies for modelling two-wheeled vehicles within the multibody dynamics framework: a systematic literature review. J. Appl. Comp. Mech. 8(1), 153–181 (2022)

    Google Scholar 

  21. Guida, R., De Simone, M.C., Dašić, P., Guida, D.: Modeling techniques for kinematic analysis of a six-axis robotic arm. IOP Conference Series: Materials Science and Engineering 568(1) (2019). art. no. 012115

    Google Scholar 

  22. De Simone, M.C., Guida, D.: Modal coupling in presence of dry friction. Machines 6(1) (2018). art. no. 8

    Google Scholar 

  23. Pappalardo, C.M., Lettieri, A., Guida, D.: A general multibody approach for the linear and nonlinear stability analysis of bicycle systems. Part I: Methods of constrained dynamics. J. Appl. Comp. Mech. 7(2), 655–670 (2021)

    Google Scholar 

  24. Pappalardo, C.M., Lettieri, A., Guida, D.: A general multibody approach for the linear and nonlinear stability analysis of bicycle systems. Part II: Application to the Whipple-Carvallo bicycle model. J. Appl. Comp. Mech. 7(2), 671–700 (2021)

    Google Scholar 

  25. Manrique Escobar, C.A., Pappalardo, C.M., Guida, D.: A parametric study of a deep reinforcement learning control system applied to the swing-up problem of the cart-pole. Appl. Sci. 10(24), 9013 (2020)

    CrossRef  Google Scholar 

  26. Pappalardo, C.M., Guida, D.: Dynamic analysis and control design of kinematically-driven multibody mechanical systems. Eng. Lett. 28(4), 1125–1144 (2020)

    Google Scholar 

  27. Ardila-Parra, S.A., Pappalardo, C., Estrada, O.A.G., Guida, D.: Finite element based redesign and optimization of aircraft structural components using composite materials. IAENG Int. J. Appl. Math. 50(4), 1–18 (2020)

    Google Scholar 

  28. Pappalardo, C.M., Lombardi, N., Guida, D.: A model-based system engineering approach for the virtual prototyping of an electric vehicle of class l7. Eng. Lett. 28(1), 215–234 (2020)

    Google Scholar 

  29. De Simone, M.C., Ventura, G., Lorusso, A., Guida, D.: Attitude controller design for micro-satellites. Lect. Notes Net. Sys. 233, 21–31 (2021)

    CrossRef  Google Scholar 

  30. De Simone, M.C., Guida, D.: Experimental investigation on structural vibrations by a new shaking table. Lect. Notes Mech. Eng., 819–831 (2020)

    Google Scholar 

  31. Colucci, F., De Simone, M.C., Guida, D.: TLD design and development for vibration mitigation in structures. Lect. Notes Net. Sys. 76, 59–72 (2020)

    CrossRef  Google Scholar 

  32. Salvati, L., d’Amore, M., Fiorentino, A., Pellegrino, A., Sena, P., Villecco, F.: Development and testing of a methodology for the assessment of acceptability systems. Machines 8(47) (2020)

    Google Scholar 

  33. Li, T., Kou, Z., Wu, J., Yahya, W., Villecco, F.: 4) Multipoint optimal minimum entropy deconvolution adjusted for automatic fault diagnosis of hoist bearing. Shock and Vibration 2021 (2021). art.no. 6614633

    Google Scholar 

  34. Liguori, A., Armentani, E., Bertocco, A., Formato, A., Pellegrino, A., Villecco, F.: Noise reduction in spur gear systems. Entropy 22, 1306 (2020)

    CrossRef  Google Scholar 

  35. Dašić, P., Dašić, J., Antanasković, D., Pavićević, N.: Statistical Analysis and Modeling of Global Innovation Index (GII) of Serbia. In: Karabegović, I. (ed.) NT 2020. LNNS, vol. 128, pp. 515–521. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46817-0_59

    CrossRef  Google Scholar 

  36. Tošović, R.; Dašić, P., Ristović, I.: Sustainable use of metallic mineral resources of Serbia from an environmental perspective. Environ. Eng. Manage. J. (EEMJ) 15(9), pp. 2075–2084 (Sept 2016). 1582–9596. https://doi.org/10.30638/eemj.2016.224

  37. Formato, A., Ianniello, D., Romano, R., Pellegrino, A., Villecco, F.: Design and development of a new press for grape marc. Machines 7(3), 51 (2019)

    Google Scholar 

  38. Villecco, F., Aquino, R.P., Calabrò, V., Corrente, M.I., Grasso, A., Naddeo, V.: Fuzzy-assisted ultrafiltration of wastewater from milk industries. In: Naddeo, V., Balakrishnan, M., Choo, K.H. (eds.) Frontiers in Water-Energy-Nexus—Nature-Based Solutions. Springer, Cham, Swiss, pp. 239–242 (2020)

    Google Scholar 

  39. Dašić, P., Dašić, J., Crvenković, B.: Applications of access control as a service for software security. Int. J. Indus. Eng. Manage. (IJIEM) 7(3), pp. 111–116 (Sept 2016). 2217–2661

    Google Scholar 

  40. Dašić, P.: Response Surface Methodology: Selected Scientific-Professional Papers (in Serbian, Slovenian and Russian). SaTCIP Publisher Ltd., Vrnjačka Banja (2019). – 301 str. ISBN 978–86–6075–054–1

    Google Scholar 

  41. Dašić, P.: Reliability of Technical Systems: Selected Scientific-Professional Papers (in Serbian and Russian). SaTCIP Publisher Ltd., Vrnjačka Banja (2019). – 308 str. ISBN 978–86–6075–051–0

    Google Scholar 

  42. Dašić, P.: Scientific and Technological Trends: Selected Scientific-Professional Papers (in Serbian). SaTCIPPublesher Ltd., Vrnjačka Banja (2020). – 305 str. ISBN 978–86–6075–072–5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmine Maria Pappalardo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Curcio, M., Pappalardo, C.M., Guida, D. (2022). Multibody Modeling and Dynamical Analysis of a Fixed-Wing Aircraft. In: Karabegović, I., Kovačević, A., Mandžuka, S. (eds) New Technologies, Development and Application V. NT 2022. Lecture Notes in Networks and Systems, vol 472. Springer, Cham. https://doi.org/10.1007/978-3-031-05230-9_8

Download citation