Skip to main content

Introduction: Geomorphology at the Start of the Twenty-First Century

  • Conference paper
  • First Online:
Geomorphology of Brazil: Complexity, Interscale and Landscape

Abstract

The history of geomorphology over the last 50 years has involved a number of major themes: the development of new techniques, the study of landscapes over time, and the investigation of organic influences, submarine environments, and extra-terrestrial phenomena. Also important have been studies of earth system science, global change, global warming, and the human impact. Finally, geomorphology has become increasingly concerned with hazards and with the application of research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alcántara-Ayala I, Goudie AS (2010) Geomorphological hazards and disaster prevention. Cambridge University Press, Cambridge, p. 304

    Book  Google Scholar 

  • Algeo TJ, Scheckler SE (1998) Terrestrial-marine teleconnections in the Devonian: links between the evolution of land plants, weathering processes and marine anoxic events. Phil Trans Roy Soc London B 353:113–130

    Article  Google Scholar 

  • Allchin B, Goudie A, Hegde K (1978) Prehistory and Palaeogeography of the Great Indian Desert. Academic Press, London, p. 389

    Google Scholar 

  • Anderson DE (2022) Revolution in techniques: temporal. In: Burt, TP, Goudie AS, Viles HA (eds.) 2022. The History of the study of landforms or the development of geomorphology. Volume 5: Geomorphology in the second half of the twentieth century. Geological Society, London, Memoirs, 58, in press

    Google Scholar 

  • Anderson DE, Goudie AS, Parker AG (2013) Global environments through the Quaternary. Oxford University Press, Oxford, p. 424

    Book  Google Scholar 

  • Anka Z, Séranne M, di Primio R (2010) Evidence of a large upper-Cretaceous depocentre across the Continent-Ocean boundary of the Congo-Angola basin. Implications for palaeo-drainage and potential ultra-deep source rocks. Mar Petrol Geol 27: 601–611

    Article  Google Scholar 

  • Antonioli F, De Falco G, Lo Presti V, Moretti L, Scardino G, Anzidei M, Bonaldo D, Carniel S, Leoni G, Furlani S, Marsico A (2020) Relative sea-Level rise and potential submersion risk for 2100 on 16 coastal plains of the Mediterranean Sea. Water 12(8): p. 2173

    Article  Google Scholar 

  • Baker VR 2008. Planetary landscape systems: a limitless frontier. Earth Surf Proc Landf 33:1341–1353

    Article  Google Scholar 

  • Beach T, Luzzadder-Beach S, Cook D, Dunning N, Kennett DJ, Krause S, Terry R, Trein D, Valdez F (2015) Ancient Maya impacts on the Earth's surface: An Early Anthropocene analog? Quat Sci Rev 124:1–30

    Article  Google Scholar 

  • Benn DI, Evans DJA (2010) Glaciers and glaciations (2nd edition). Hodder, London, p. 816

    Google Scholar 

  • Bennett SJ, Simon A (2004) Riparian vegetation and fluvial geomorphology. American Geophysical Union, Washington D.C., p. 282

    Book  Google Scholar 

  • Bhardwaj A, Sam L, Gharehchahi S (2021) Four decades of understanding Martian geomorphology: Revisiting Baker’s ‘The geomorphology of Mars’. Progr Phys Geogr: Earth Environ: p. 03091333211026215

    Google Scholar 

  • Birch SPD, Hayes AG, Howard AD, Moore JM, Radebaugh J (2016) Alluvial fan morphology, distribution and formation on Titan. Icarus 270:238–247

    Article  Google Scholar 

  • Bishop, P. (2007) Long-term landscape evolution: linking tectonics and surface processes. Earth Surf Proc Landf 32:329–365

    Article  Google Scholar 

  • Blum MD, Törnqvist TE (2000) Fluvial responses to climate and sea-level change: a review and look forward. Sedimentology 47 (Suppl. 1):2–48

    Article  Google Scholar 

  • Boardman J, Poesen J (eds.) (2006) Soil erosion in Europe. Wiley, Chichester, p. 878

    Google Scholar 

  • Bogaart PW, Van Balen RT, Kasse C, Vandenberghe J (2003) Process-based modeling of fluvial system response to rapid climate change—I: model formulation and generic applications. Quat Sci Rev 22:2077–2095

    Article  Google Scholar 

  • Bourke MC, Goudie AS (2009) Varieties of barchan form in the Namib Desert and on Mars. Aeolian Res 1:45–54

    Article  Google Scholar 

  • Bourke MC, Lancaster N, Fenton LK, Parteli EJR, Zimbelman JR, Radebaugh J (2010) Extraterrestrial dunes: an introduction to the special issue on planetary dune systems. Geomorphology 121:1–14

    Article  Google Scholar 

  • Bozi BS, Figueiredo BL, Rodrigues E, Cohen MC, Pessenda LC, Alves EE, de Souza, AV, Bendassolli JA, Macario K, Azevedo P, Culligan N (2021) Impacts of sea-level changes on mangroves from southeastern Brazil during the Holocene and Anthropocene using a multi-proxy approach. Geomorphology 390: p. 107860

    Google Scholar 

  • Braje TJ (2015) Earth systems, human agency, and the Anthropocene: Planet Earth in the human age. J Archaeol Res 23:369–396

    Article  Google Scholar 

  • Büdel J (1982) Climatic geomorphology (translated by L. Fischer and D. Busche). Princeton University Press, Princeton, New Jersey, p. 444

    Google Scholar 

  • Burbank DW, Anderson RS (2011) Tectonic geomorphology: A frontier in Earth science (2nd edition). Blackwell Science, Malden, Mass., p. 460

    Google Scholar 

  • Burt TP, Goudie AS, Viles HA (eds.) (2022) The history of the study of landforms or the development of geomorphology. Volume 5: Geomorphology in the second half of the twentieth century. Geological Society, London, Memoirs, 58, in press

    Google Scholar 

  • Burt TP, Chorley RJ, Brunsden D, Cox NJ, Goudie AS (eds.) (2008) The history of the study of landforms or the development of geomorphology volume 4: Quaternary and recent processes and forms (1890–1965) and the mid-century revolutions. Geological Society of London, London, p. 1056

    Google Scholar 

  • Butler DR (1995) Zoogeomorphology: Animals as geomorphic agents. Cambridge University Press, Cambridge, p. 240

    Book  Google Scholar 

  • Cahoon DR, McKee KL, Morris JT (2021) How plants influence resilience of salt marsh and mangrove wetlands to sea-level rise. Estuaries Coasts 44(4):883–898

    Article  Google Scholar 

  • Carson MA, MJ Kirkby (1972) Hillslope Form and Process. Cambridge University Press, Cambridge

    Google Scholar 

  • Carter NEA, Viles HA (2005) Bioprotection explored: the story of a little known earth surface process. Geomorphology 67:273–281

    Article  Google Scholar 

  • Chan MA, Nicoll K, Ormö J, Okubo C, Komatsu G (2011) Utah’s geologic and geomorphic analogs to Mars—an overview for planetary exploration. Geol Soc Am Special Papers 483:349–375

    Google Scholar 

  • Chappell A, Webb NP, Butler HJ, Strong CL, McTainsh GH, Leys JF, Viscarra Rossel, RA (2013) Soil organic carbon dust emission: an omitted global source of atmospheric CO2. Global Change Biol 19:3238–3244

    Article  Google Scholar 

  • Chen J, Wang Z, Tam CY, Lau NC, Lau DSD, Mok HY (2020) Impacts of climate change on tropical cyclones and induced storm surges in the Pearl River Delta region using pseudo-global-warming method. Sci Rep 10(1):1–10

    Google Scholar 

  • Church M (2010) The trajectory of geomorphology. Progr Phys Geogr 34:265–286

    Article  Google Scholar 

  • Church M (2022) Physical experiments in geomorphology. In: Burt TP, Goudie AS & Viles HA (eds.) 2022. The history of the study of landforms or the development of geomorphology. Volume 5: Geomorphology in the second half of the twentieth century. Geological Society, London, Memoirs, 58, in press

    Google Scholar 

  • Clare M, Lintern DG, Rosenberger K, Clarke JEH, Paull C, Gwiazda R, Cartigny MJ, Talling PJ, Perara D, Xu J, Parsons D (2020) Lessons learned from the monitoring of turbidity currents and guidance for future platform designs. Geol Soc, London, Special Pub 500(1):605–634

    Article  Google Scholar 

  • Conway S (2022) Planetary geomorphology. In Burt TP, Goudie AS & Viles HA (eds) The history of the study of landforms or the development of geomorphology. Volume 5: Geomorphology in the second half of the twentieth century. Geological Society, London, Memoirs, 58, in press

    Google Scholar 

  • Coombes MA (2016a) Biogeomorphology. International encyclopedia of geography: People, the Earth, environment and technology. John Wiley and Sons, Chichester, 1–9

    Google Scholar 

  • Coombes MA (2016b) Biogeomorphology: diverse, integrative and useful. Earth Surf Proc Landf 41(15):2296–2300

    Google Scholar 

  • Cooke RU, Doornkamp JC (1990) Geomorphology in environmental management. (2nd edition). Oxford University Press, Oxford, p. 434

    Google Scholar 

  • Cooper AH, Brown TJ, Price SJ, Ford J, Waters CN 2018. Humans are the most significant global geomorphological driving force of the 21st century. The Anthropocene Review, 5(3):222–229

    Article  Google Scholar 

  • Coppo NP, Schnegg P-A, Falco P, Costa R (2009) A deep scar in the flank of Tenerife (Canary Islands): Geophysical contribution to tsunami hazard assessment. Earth Planetary Sci Letters 282:65–68

    Article  Google Scholar 

  • Crozier MJ (2010) Deciphering the effect of climate change on landslide activity: a review. Geomorphology 124:260–267

    Article  Google Scholar 

  • Crutzen PJ (2002) The “anthropocene”. J Phys IV 12:1–5

    Google Scholar 

  • da Luz RA, Rodrigues C (2015) Anthropogenic changes in urbanised hydromorphological systems in a humid tropical environment: River Pinheiros, Sao Paulo, Brazil. Z Geomorph Supplementband 59:109–135

    Article  Google Scholar 

  • Dadson S (2010) Geomorphology and Earth system science. Progr Phys Geogr 34:385–398

    Article  Google Scholar 

  • Dadson S (2020) Geomorphology and Earth system science. In Burt TP, Goudie AS & Viles HA (eds.) (2022) The history of the study of landforms or the development of geomorphology. Volume 5: Geomorphology in the second half of the twentieth century. Geological Society, London, Memoirs, 58, in press

    Google Scholar 

  • Day SJ, Maslin M (2010) Gas hydrates: a hazard for the twenty-first century? Phil Trans Roy Soc A 368:2579–2583

    Article  Google Scholar 

  • Deo RC, Syktus JI, McAlpine CA, Lawrence PJ, McGowan HA, Phinn SR (2009) Impact of historical land cover change on daily indices of climate extremes including droughts in eastern Australia. Geophys Res Letters 36: L08705. doi:https://doi.org/10.1029/2009GL037666

    Article  Google Scholar 

  • de Paula Barros LF, Junior AP (2020) Late Quaternary landscape evolution in the Atlantic Plateau (Brazilian highlands): Tectonic and climatic implications of fluvial archives. Earth-Sci Rev 207:103228

    Article  Google Scholar 

  • Di Sante F, Coppola E, Giorg, F (2021) Projections of river floods in Europe using EURO‐CORDEX, CMIP5 and CMIP6 simulations. Int J Climatol 41(5):3203–3221

    Article  Google Scholar 

  • Diniega S, Bramson AM, Buratti B, Buhler P, Burr DM, Chojnacki M, Conway SJ, Dundas CM, Hansen CJ, McEwen AS, Lapôtre MG (2021) Modern Mars’ geomorphological activity, driven by wind, frost, and gravity. Geomorphology, p. 107627

    Google Scholar 

  • Ding Y, Mu C, Wu T, Hu G, Zou D, Wang D, Li W, Wu X (2020) Increasing cryospheric hazards in a warming climate. Earth-Sci Rev: p. 103500

    Google Scholar 

  • Douglas I, Lawson N (2001) The human dimensions of geomorphological work in Britain. J Industr Ecol 4:9–33

    Article  Google Scholar 

  • Drewry D (1986) Glacial geologic processes. Arnold, London

    Google Scholar 

  • Dupré B, Dessert C, Oliva P, Goddéris Y, Viers J, François L, Millot R, Gaillardet J (2003) Rivers, chemical weathering and Earth’s climate. CR Geosci 335:1141–1160

    Article  Google Scholar 

  • Duszyński F, Ford DC, Goudie A, Migoń P. 2022. Rock properties and rock-controlled landforms. In Burt TP, Goudie AS & Viles HA (eds) The history of the study of landforms or the development of geomorphology. Volume 5: Geomorphology in the second half of the twentieth century. Geological Society, London, Memoirs, 58, in press

    Google Scholar 

  • East AE, Sankey J.B (2020) Geomorphic and sedimentary effects of modern climate change: current and anticipated future conditions in the western United States. Rev Geophys 58(4): p. e2019RG000692

    Google Scholar 

  • Eckardt, F. 2022. Geomorphology from Earth Orbit 1957–2000. In Burt TP, Goudie AS & Viles HA (eds.) (2022) The history of the study of landforms or the development of geomorphology. Volume 5: Geomorphology in the second half of the twentieth century. Geological Society, London, Memoirs, 58, in press

    Google Scholar 

  • El-Baz F, Maxwell TA (eds.) (1982) Desert landforms of Southwest Egypt: a basis for comparison with Mars. NASA, Washington D.C. p. 385

    Google Scholar 

  • Ellis EC (2018) Anthropocene: a very short introduction. Oxford University Press, Oxford, p. 208

    Book  Google Scholar 

  • Fan W, McGuire JJ, Shearer PM (2020) Abundant spontaneous and dynamically triggered submarine landslides in the Gulf of Mexico. Geophys Res Letters 47(12): p. e2020GL087213

    Google Scholar 

  • Fan Y, Clark M, Lawrence DM, Swenson S, Band LE, Brantley SL, Brooks PD, Dietrich WE, Flores A, Grant G, Kirchner JW (2019) Hillslope hydrology in global change research and Earth system modeling. Water Resources Research, 55(2):1737–1772

    Article  Google Scholar 

  • Ferguson R, Hardy R, Lewin J (2022). Fluvial processes and forms. In Burt TP, Goudie AS & Viles HA (eds.) (2022) The history of the study of landforms or the development of geomorphology. Volume 5: Geomorphology in the second half of the twentieth century. Geological Society, London, Memoirs, 58, in press

    Google Scholar 

  • Flemming NC (1999) Archaeological evidence for vertical movement on the continental shelf during the Palaeolithic, Neolithic and Bronze Age periods. Geol Soc London Special Pub 146(1):129–146

    Article  Google Scholar 

  • Foley MM, Magilligan FJ, Torgersen CE, Major JJ, Anderson CW, Connolly PJ, Wieferich D, Shafroth PB, Evans JE, Infante D, Craig LS (2017) Landscape context and the biophysical response of rivers to dam removal in the United States. PloS one 12(7): p. e0180107

    Google Scholar 

  • Fookes PG, Lee EM, Milligan G (eds.) (2005) Geomorphology for engineers. Whittles Publishing, Dunbeath, p. 874

    Google Scholar 

  • Ford DC, Williams PW (2007) Karst geomorphology and hydrology (2nd Edition). Wiley, Chichester, p. 576

    Book  Google Scholar 

  • Foster GC, Chiverrell RC, Thomas GSP et al. (2009) Fluvial development and the sediment regime of the lower Calder, Ribble catchment, northwest England. Catena 77:81–95

    Article  Google Scholar 

  • French HM (2017) The periglacial environment (4th edition). John Wiley and Sons, Chichester, p. 544

    Google Scholar 

  • Gardner J (2020) How water, wind, waves and ice shape landscapes and landforms: Historical contributions to geomorphic science. Geomorphology, 366, p. 106687

    Article  Google Scholar 

  • García-Soriano D, Quesada-Román A, Zamorano-Orozco JJ (2020) Geomorphological hazards susceptibility in high-density urban areas: A case study of Mexico City. J South Am Earth Sci 102:102667

    Google Scholar 

  • Gillette DA (1977) Fine particulate emissions due to wind erosion. Transactions of the ASAE 20(5):890–897

    Article  Google Scholar 

  • Goreau TJ, Hayes RL (2021) Global warming triggers coral reef bleaching tipping point. Ambio, 50(6):1137–1140

    Article  Google Scholar 

  • Goudie AS (ed.) (1990) Geomorphological techniques (2nd edition). Routledge, London and New York, p. 592

    Google Scholar 

  • Goudie AS (2005) The drainage of Africa since the Cretaceous. Geomorphology 67: 437–456

    Article  Google Scholar 

  • Goudie AS (2006) The Schmidt Hammer in geomorphological research. Progress in Physical Geography 30:703–718

    Article  Google Scholar 

  • Goudie AS (2013) Arid and semi-arid geomorphology. Cambridge University Press, Cambridge, p. 461

    Book  Google Scholar 

  • Goudie AS (2016a) Geomorphology: History. International Encyclopedia of Geography: People, the Earth, Environment and Technology. Wiley, Chichester, 1–8

    Google Scholar 

  • Goudie AS (2016b) Quantification of rock control in geomorphology. Earth-Sci Rev 159: 374–387

    Google Scholar 

  • Goudie AS (2018) The human impact on the natural environment (8th edition). Wiley-Blackwell, Oxford, p. 472

    Google Scholar 

  • Goudie AS (2020) The human impact in geomorphology–50 years of change. Geomorphology 366: p. 106601

    Google Scholar 

  • Goudie AS, Middleton NJ (2006) Desert dust in the global system. Springer, Heidelberg, p. 298

    Google Scholar 

  • Goudie AS, Seely MK (2011) World Heritage Desert Landscapes: Potential Priorities for the Recognition of Desert Landscapes and Geomorphological Sites on the World Heritage List, IUCN World Heritage Studies N° 9

    Google Scholar 

  • Goudie AS, Viles HA (1997) Salt weathering hazards. John Wiley and Sons, Chichester, p. 256

    Google Scholar 

  • Goudie AS, Viles HA (2010a) Landscapes and geomorphology. Oxford University Press, Oxford, p. 152

    Google Scholar 

  • Goudie AS, Viles HA (2010b) Weathering hazards. In Alcántara-Ayala & Goudie AS, (eds.). Geomorphological hazards and disaster prevention. Cambridge University Press, Cambridge, 145–159

    Google Scholar 

  • Goudie AS, Viles HA (2012) Weathering and the global carbon cycle: Geomorphological perspectives. Earth-Sci Rev 113(1–2):59–71

    Article  Google Scholar 

  • Goudie AS, Viles HA (2016) Geomorphology in the Anthropocene. Cambridge University Press, Cambridge, p. 380

    Book  Google Scholar 

  • Graf WL (2001) Damage control: restoring the Physical integrity of America’s rivers. Ann Ass Am Geogr 91:1–27

    Article  Google Scholar 

  • Gray M (2013) Geodiversity: valuing and conserving abiotic nature (2nd edition). Wiley, Chichester, p. 512

    Google Scholar 

  • Greeley R, Iversen JD (1985) Wind as a Geological Process on Earth, Mars, Venus and Titan. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Griffiths JS, Lee EM (2022) Geomorphology in environmental management 1965–2000. In Burt TP, Goudie AS & Viles HA (eds) The history of the study of landforms or the development of geomorphology. Volume 5: Geomorphology in the second half of the twentieth century. Geological Society, London, Memoirs, 58, in press

    Google Scholar 

  • Gutierrez F (2010) Hazards associated with karst. In Alcántara-Ayala I & Goudie AS, (eds.), Geomorphological hazards and disaster prevention. Cambridge University Press, Cambridge, 161–175

    Chapter  Google Scholar 

  • Haff PK, (2010) Hillslopes, rivers, plows and trucks: mass transport on Earth’s surface by natural and technological processes. Earth Surf Proc Landf 35:1157–1166

    Article  Google Scholar 

  • Harden T, Macklin MG, Baker VR (2010) Holocene flood histories in south-western USA. Earth Surf Proc Landf 35:707–716

    Google Scholar 

  • Hooke JM (2020) Changing landscapes: Five decades of applied geomorphology. Geomorphology 366:106793

    Article  Google Scholar 

  • Hooke RL (1994) On the efficacy of humans as geomorphic agents. USA Today, 4, 217:224–225

    Google Scholar 

  • Hudson PF, Butzer KW, Beach T (2008) Fluvial deposits and environmental history: Synthesis. Geomorphology 101(1):xvii

    Google Scholar 

  • Hudson P, Goudie A, Asrat A. (2015) Human Impacts on landscapes: Sustainability and the role of Geomorphology. Z Geomorph 59, Suppl 2: 1–5

    Google Scholar 

  • Ielpi A, Lapôtre MG (2020) A tenfold slowdown in river meander migration driven by plant life. Nature Geoscience 13(1):82–6

    Article  Google Scholar 

  • Innocenti C, Battaglini L, D’Angelo S, Fiorentino A (2021) Submarine landslides: mapping the susceptibility in European seas. Q J Eng Geol Hydrogeol 54, no. 1

    Google Scholar 

  • IPCC (2021) Climate change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge (in press)

    Google Scholar 

  • Joyce EB (2010) Australia’s geoheritage: history of study, a new inventory of geosites and applications to geotourism and geoparks. Geoheritage 2(1–2):39–56

    Article  Google Scholar 

  • Junior PF, Korb CC, Brannstrom C (2018) Research on Technogene/Anthropocene in Brazil. Quat Environ Geosci 9(1):1–10

    Google Scholar 

  • Kaplan JO, Krumhardt KM, Zimmermann N (2009) The prehistoric and preindustrial deforestation of Europe. Quat Sci Rev 28:3016–34

    Google Scholar 

  • Keller E, Adamaitis C, Alessio P, Anderson S, Goto E, Gray S, Gurrola L, Morell K (2020) Applications in geomorphology. Geomorphology 366: p.106729

    Article  Google Scholar 

  • Keane JT (2019) Maar on Titan. Nature Geosci 12(10):789

    Google Scholar 

  • Kirkby M (2022) Hillslope form and process: History 1960–2000+. In Burt TP, Goudie AS & Viles HA (eds.) (2022) The history of the study of landforms or the development of geomorphology. Volume 5: Geomorphology in the second half of the twentieth century. Geological Society, London, Memoirs, 58, in press

    Google Scholar 

  • Lane SN, Bradbrook KF, Richards KS, Biron PA, Roy AG (1999) The application of computational fluid dynamics to natural river channels: three-dimensional versus two-dimensional approaches. Geomorphology 29(1–2):1–20

    Article  Google Scholar 

  • Latrubesse E (ed.) (2009) Natural hazards and human-exacerbated disasters in Latin America. Elsevier, Amsterdam, p. 550

    Google Scholar 

  • Lazarus ED, Ellis MA, Murray AB, Hall DM, (2016). An evolving research agenda for human–coastal systems. Geomorphology 256:81–90

    Article  Google Scholar 

  • Leopold LB, Wolman MG, Miller JP (1964) Fluvial processes and geomorphology. W.H. Freeman, San Francisco, p. 544

    Google Scholar 

  • Li P, Kneller B, Hansen L (2021) Anatomy of a gas-bearing submarine channel-lobe system on a topographically complex slope (offshore Nile Delta, Egypt). Marine Geol 437:p. 106496

    Google Scholar 

  • Lin S, Liu Y, Huang X (2021) Climate-induced Arctic-boreal peatland fire and carbon loss in the 21st century. Sci Total Environ 796:p. 148924

    Google Scholar 

  • Lin W, Sun Y, Nijhuis S, Wang Z (2020) Scenario-based flood risk assessment for urbanizing deltas using future landuse simulation (FLUS): Guangzhou Metropolitan Area as a case study. Sci Total Environ 15:139899

    Google Scholar 

  • Lopes RM, Malaska MJ, Schoenfeld AM, Solomonidou A, Birch SPD, Florence M, Hayes AG, Williams DA, Radebaugh J, Verlander T, Turtle EP (2020) A global geomorphologic map of Saturn’s moon Titan. Nature Astron 4(3):228–233

    Article  Google Scholar 

  • Løvholt F, Bondevik S, Laberg JS, Kim J, Boylan N (2017) Some giant submarine landslides do not produce large tsunamis. Geophys Res Letters, 44(16):8463–8472

    Article  Google Scholar 

  • Ma X, Zhao C, Zhu J, (2021) Aggravated risk of soil erosion with global warming—A global meta-analysis. Catena 200:p. 105129

    Google Scholar 

  • Macklin MG, Lewin J, Jones AF, (2014) Anthropogenic alluvium: an evidence-based meta-analysis for the UK Holocene. Anthropocene 6:26–38

    Article  Google Scholar 

  • Mann GA, Clarke JDA, Gostin VA (2004) Surveying for Mars analogue research sites in the central Australian deserts. Austral Geogr Studies 42:116–124

    Article  Google Scholar 

  • Martin Y (2022) Modelling. In Burt TP, Goudie AS & Viles HA (eds) The history of the study of landforms or the development of geomorphology. Volume 5: Geomorphology in the second half of the twentieth century. Geological Society, London, Memoirs, 58, in press

    Google Scholar 

  • Masselink G, Hughes MG (2003) An introduction to coastal processes and geomorphology. Routledge, London

    Google Scholar 

  • Masselink G, Russell P, Rennie A, Brooks S, Spencer T (2020) Impacts of climate change on coastal geomorphology and coastal erosion relevant to the coastal and marine environment around the UK. MCCIP Science Review 2020: 158–189. doi: https://doi.org/10.14465/2020.arc08.cgm

    Article  Google Scholar 

  • Masselink G, McCall R, Beetham E, Kench P, Storlazzi C (2021) Role of future reef growth on morphological response of coral reef islands to sea-level rise. J Geophys Res: Earth Surface: 126(2):e2020JF005749

    Google Scholar 

  • McGuire B (2010) Climate forcing of geological and geomorphological hazards. Phil Trans Roy Soc A, 368:2311–2315

    Article  Google Scholar 

  • Mescolotti PC, do Nascimento Pupim F, Ladeira FS, Sawakuchi AO, Santa Catharina A, Assine ML (2021) Fluvial aggradation and incision in the Brazilian tropical semi-arid: Climate-controlled landscape evolution of the São Francisco River. Quat Sci Rev 263:106977

    Google Scholar 

  • Micallef A, Berndt C, Masson DG, Stow DAV (2007) A technique for the morphological characterization of submarine landscapes as exemplified by debris flows of the Storegga Slide. J Geophys Res 112: F02001. doi:https://doi.org/10.1029/2006JF000505

    Article  Google Scholar 

  • Micallef A, Masson DG, Berndt C, Stow DAV (2009) Development and mass movement processes of the north-eastern Storegga Slide. Quat Sci Rev 28:433–448

    Google Scholar 

  • Micallef A, Krastel S, Savini A (eds.) (2018) Submarine geomorphology. Springer, Cham, p. 571

    Google Scholar 

  • Micallef A, Krastel S, Savini A (2022) Submarine geomorphology. In Burt TP, Goudie AS, Viles HA (eds.), The history of the study of landforms or the development of geomorphology. Volume 5: Geomorphology in the second half of the twentieth century. Geological Society, London, Memoirs, 58, in press

    Google Scholar 

  • Migoń P 2007 Granite landscapes of the world. Oxford University Press, Oxford, p. 412

    Google Scholar 

  • Moore, R., Davis, G. and Dabson, O., 2018. Applied geomorphology and geohazard assessment for deepwater development. In Micallef A, Krastel S, Savini A (eds.) Submarine geomorphology. Springer, Cham, 459–479

    Chapter  Google Scholar 

  • Morán‐Ordóñez A, Duane A, Gil‐Tena A, De Cáceres M, Aquilué N, Guerra CA, Geijzendorffer IR, Fortin MJ, Brotons L (2020) Future impact of climate extremes in the Mediterranean: Soil erosion projections when fire and extreme rainfall meet. Land Degrad Devel, 31(18):3040–3054

    Article  Google Scholar 

  • Morgan KM, Perry CT, Arthur R, Williams HT, Smithers SG (2020) Projections of coral cover and habitat change on turbid reefs under future sea-level rise. Proc Roy Soc B, 287(1929):p. 20200541

    Google Scholar 

  • Morim J, Vitousek S, Hemer M, Reguero B, Erikson L, Casas-Prat M, Wang XL, Semedo A, Mori N, Shimura T, Mentaschi L (2021) Global-scale changes to extreme ocean wave events due to anthropogenic warming. Environ Res Letters 16(7):p. 074056

    Google Scholar 

  • Nichols MH, Magirl C, Sayre NF, Shaw JR (2018) The geomorphic legacy of water and erosion control structures in a semiarid rangeland watershed. Earth Surf Proc Landf 43:909–918

    Article  Google Scholar 

  • Nicholls RJ, Hoozemans FMJ, Marchand M (1999) Increasing flood risk and wetland losses due to global sea level rise: regional and global analyses. Global Environ Change 9:S69–87

    Article  Google Scholar 

  • Ottesen D, Dowdeswell JA (2009) An inter–ice-stream glaciated margin: Submarine landforms and a geomorphic model based on marine-geophysical data from Svalbard. Geol Soc Am Bull 121:1647–1665

    Article  Google Scholar 

  • Ouchi S (1996) Studies of process geomorphology in Japan in the first half of the 1990s. Geographical Review of Japan, Series B 69(2):126–133

    Article  Google Scholar 

  • Paola C, Foufoula-Georgiou E, Dietrich WE, Hondzo M, Mohrig D, Parker G, Power ME, Rodriguez-Iturbe I, Voller V, Wilcock, P (2006) Toward a unified science of the Earth’s surface: Opportunities for synthesis among hydrology, geomorphology, geochemistry, and ecology. Water Resources Res 42(3). doi:https://doi.org/10.1029/2005WR004336

  • Phillips C, Marden M, Basher LR (2018) Geomorphology and forest management in New Zealand's erodible steeplands: An overview. Geomorphology 307:107–121

    Google Scholar 

  • Quinton JN, Govers G, Van Oost K, Bardgett RD (2010) The impact of agricultural soil erosion on biogeochemical cycling. Nature Geosci 3:311–314

    Article  Google Scholar 

  • Radebaugh J, Lorenz R, Farr T, Paillou P, Savage C, Spencer C (2010) Linear dunes on Titan and Earth: initial remote sensing comparisons. Geomorphology 121:122–132

    Article  Google Scholar 

  • Rodriguez AB, McKee BA, Miller CB, Bost MC, Atencio AN (2020). Coastal sedimentation across North America doubled in the 20th century despite river dams. Nature Comms 11(1):1–9

    Article  Google Scholar 

  • Santos DS, Reynard E, Mansur KL, Seoane JC (2019) The specificities of geomorphosites and their influence on assessment procedures: A methodological comparison. Geoheritage, 11(4):2045–2064

    Article  Google Scholar 

  • Savi S, Comiti F, Strecker MR (2021) Pronounced increase in slope instability linked to global warming: A case study from the eastern European Alps. Earth Surf Proc Landf. doi:https://doi.org/10.1002/esp.5100

    Article  Google Scholar 

  • Selby MJ (1980) A rock mass strength classification for geomorphic purposes: with tests from Antarctica and New Zealand. Z Geomorph 24:31–51

    Article  Google Scholar 

  • Shao Y (2008) Physics and modelling of wind erosion (2nd edition). Springer, Berlin and Heidelberg, p. 472

    Google Scholar 

  • Shugar DH, Burr A, Haritashya UK, Kargel JS, Watson CS, Kennedy MC, Bevington AR, Betts RA, Harrison S, Strattman K (2020) Rapid worldwide growth of glacial lakes since 1990. Nature Climate Change 10(10):939–945

    Article  Google Scholar 

  • Singh RB, Wei D, Anand S (eds.) (2021) Global geographical heritage, geoparks and geotourism: Geoconservation and development. Springer Nature, Singapore, p. 498

    Google Scholar 

  • Slaymaker O, Spencer T, Embleton-Hamann C (eds.) (2009) Geomorphology and environmental change. Cambridge University Press, Cambridge, p. 450

    Google Scholar 

  • Smith BD, Zeder MA (2013) The onset of the Anthropocene. Anthropocene 4:8–13

    Google Scholar 

  • Smith M, Griffiths J, Paron P (eds.) (2011) Applied geomorphological mapping. Elsevier, Amsterdam, p. 610

    Google Scholar 

  • Soderblom LA and 18 others (2007) Topography and geomorphology of the Huygens landing site on Titan. Planetary Space Sci 55:2015–2024

    Google Scholar 

  • Sommer C, Malz P, Seehaus TC, Lippl S, Zemp M, Braun MH (2020) Rapid glacier retreat and downwasting throughout the European Alps in the early 21st century. Nature Comm 11(1):1–10

    Article  Google Scholar 

  • Spencer T, French JR (2022) Coastal processes and landforms. In Burt TP, Goudie AS & Viles HA (eds.) (2022) The history of the study of landforms or the development of geomorphology. Volume 5: Geomorphology in the second half of the twentieth century. Geological Society, London, Memoirs, 58, in press

    Google Scholar 

  • Steffen W (2010) Observed trends in Earth system behaviour. Interdis Rev Climate Change 1:428–449

    Article  Google Scholar 

  • Steffen W, Sanderson RA, Tyson PD, Jäger J, Matson PA, Moore III B, Oldfield F, Richardson K, Schellnhuber HJ, Turner BL, Wasson RJ (2006) Global change and the earth system: a planet under pressure. Springer Science & Business Media

    Google Scholar 

  • Summerfield MA (1991) Global geomorphology: An introduction to the study of landforms. Longman, Harlow, p. 560

    Google Scholar 

  • Summerfield MA (ed.), (2000) Geomorphology and global tectonics. John Wiley and Sons, Chichester, p. 386

    Google Scholar 

  • Summerfield MA (2005) A tale of two scales, or the two geomorphologies. Trans Inst Brit Geogr NS 30:402–415

    Article  Google Scholar 

  • Summerfield MA (2022) Plate tectonics and macrogeomorphology. In Burt TP, Goudie AS & Viles HA (eds) The history of the study of landforms or the development of geomorphology. Volume 5: Geomorphology in the second half of the twentieth century. Geological Society, London, Memoirs, 58, in press

    Google Scholar 

  • Suzuki T, Matsukura Y, Ehlen J, Tanaka Y (2000) (eds.) Rock Control in Geomorphological Processes. Trans Jap Geomorph Union 23(2):1–386

    Google Scholar 

  • Syvitski JPM, Milliman JD (2007) Geology, geography and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean. J Geol 115:1–19

    Article  Google Scholar 

  • Syvitski JPM, Vörösmarty CJ, Kettner AJ, Green P (2005) Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308:376–380

    Article  Google Scholar 

  • Szabó J, Dávid L, Lóczy D (eds.) (2010) Anthropogenic geomorphology. Springer, Dordrecht, p. 260

    Google Scholar 

  • Tessler ZD, Vörösmarty CJ, Overeem I, Syvitski JP (2018) A model of water and sediment balance as determinants of relative sea level rise in contemporary and future deltas. Geomorphology 305:209–220

    Article  Google Scholar 

  • Thomas MF (1994) Geomorphology in the tropics: A study of weathering and denudation in low latitudes. John Wiley & Sons, Chichester, p. 482

    Google Scholar 

  • Thouret J-C (2010) Volcanic hazards and risks: a geomorphological perspective. In Alcántara-Ayala I & Goudie AS (eds.), Geomorphological hazards and disaster prevention. Cambridge University Press, Cambridge, 13–32

    Chapter  Google Scholar 

  • Tokano T (2020) Stable existence of tropical endorheic lakes on Titan. Geophys Res Letters 47(5):p. e2019GL086166

    Google Scholar 

  • Turetsky MR, Abbott BW, Jones MC, Anthony KW, Olefeldt D, Schuur EA Grosse, G., Kuhry, P., Hugelius, G., Koven, C., Lawrence, D.M., (2020) Carbon release through abrupt permafrost thaw. Nature Geosci 13(2):138–143

    Google Scholar 

  • Viles HA (ed.) (1988) Biogeomorphology. Blackwell, Oxford, p. 376

    Google Scholar 

  • Viles HA (2004) Biogeomorphology. In Goudie AS (ed.) Encylopedia of geomorphology. Routledge, London, 83–86

    Google Scholar 

  • Viles HA (2020) Biogeomorphology: Past, present and future. Geomorphology 366: p.106809

    Article  Google Scholar 

  • Viles HA, Goudie AS, Goudie A (2021) Ants as geomorphological agents: A global assessment. Earth-Science Rev 213:p. 103469

    Google Scholar 

  • Viles HA, Goudie AS, Grab S, Lalley J, (2011) The use of the Schmidt Hammer and Equotip for rock hardness assessment in geomorphology and heritage science: A comparative analysis. Earth Surf Proc Landf 36:320–333

    Article  Google Scholar 

  • Viles HA, Naylor LA, Carter NEA Chaput, D., (2008) Biogeomorphological disturbance regimes: progress in linking ecological and geomorphological systems. Earth Surf Proc Landf 33:1419–1435

    Google Scholar 

  • Vita-Finzi C (1967) The Mediterranean valleys. Cambridge University Press, Cambridge, p. 150

    Google Scholar 

  • Walker HJ, Grabau WE (eds.) (1993) The evolution of geomorphology. A nation-by-nation summary of development. Wiley, Chichester, p. 556

    Google Scholar 

  • Walker HJ, McGraw M (2010) Geomorphology and coastal hazards. In Alcántara-Ayala I & Goudie AS (eds.), Geomorphological hazards and disaster prevention. Cambridge University Press, Cambridge, 129–144

    Chapter  Google Scholar 

  • Walling DE, (2006) Human impact on land-ocean sediment transfer by the world’s rivers. Geomorphology 79:192–216

    Article  Google Scholar 

  • Wan W, Zhao J, Li HY, Mishra A, Ruby Leung L, Hejazi M, Wang W, Lu H, Deng Z, Demissisie Y, Wang H, (2017) Hydrological drought in the Anthropocene: Impacts of local water extraction and reservoir regulation in the US. J Geophys Res: Atmosph 122(21):11–313

    Article  Google Scholar 

  • Wang B, Lyu F, Li S, Li J, Yang Z, Li L, Wang X, Lu Y, Yang T, Wu J, Sun G (2021a) A buried submarine canyon in the northwest South China Sea: architecture, development processes and implications for hydrocarbon exploration. Acta Oceanologica Sinica, 40(3):84–93

    Google Scholar 

  • Wang P, Huang Q, Pozdniakov SP, Liu S, Ma N, Wang T, Zhang Y, Yu J, Xie J, Fu G, Frolova NL (2021b) Potential role of permafrost thaw on increasing Siberian river discharge. Environ Res Letters 16(3):p. 034046

    Google Scholar 

  • Wang Y, Wu F, Li X, Chen L (2019) Geotourism, geoconservation, and geodiversity along the belt and road: A case study of Dunhuang UNESCO Global Geopark in China. Proc Geol Ass 130(2):232-241

    Article  Google Scholar 

  • Washburn AL (1979) Geocryology. Arnold, London

    Google Scholar 

  • Webb NP, Chappell A, Strong CL, Marx SK, McTainsh GH (2012) The significance of carbon‐enriched dust for global carbon accounting. Glob Change Biol 18(11):3275–3278

    Google Scholar 

  • Whalley WB (ed.) (1978) Scanning electron microscopy in the study of sediments. GeoAbstracts, Norwich, p. 414

    Google Scholar 

  • Whipple KX (2009) The influence of climate on the tectonic evolution of mountain belts. Nature Geosci 2:97–104

    Article  Google Scholar 

  • Whipple KX, Meade BJ (2006) Orogen response to changes in climatic and tectonic forcing. Earth Planetary Sci Letters 243:218–228

    Article  Google Scholar 

  • Whittaker AC, Cowie PA, Attal M, Tucker GE, Roberts GP (2007) Bedrock channel adjustment to tectonic forcing: implications for predicting river incision rates. Geology 35:103–106

    Article  Google Scholar 

  • Wilkinson BH, McElroy BJ (2007) The impact of humans on continental erosion and sedimentation. Bull Geol Soc Am 119:140–156

    Article  Google Scholar 

  • Williams PW (2008) World heritage caves and karst, a thematic study: global review of karst world heritage properties: present situation, future prospects and management, requirements. IUCN World Heritage Studies N° 2

    Google Scholar 

  • Wohl E (2014) Time and the rivers flowing: Fluvial geomorphology since 1960. Geomorphology 216:263–282

    Article  Google Scholar 

  • Wohl E (2020) Rivers in the Anthropocene: the US perspective. Geomorphology 366:106600

    Article  Google Scholar 

  • Wood C (2009) World heritage volcanoes: a thematic study: a global review of volcanic world heritage properties: Present situation, future prospects and management requirements. IUCN World Heritage Studies N° 8

    Google Scholar 

  • Wood LR, Neumann K, Nicholson KN, Bird BW, Dowling CB, Sharma S (2020) Melting Himalayan glaciers threaten domestic water resources in the Mount Everest Region, Nepal. Frontiers Earth Sci. 29:128.

    Google Scholar 

  • Xiao L, Wang J, Dang Y, Cheng Z, Huang T, Zhao J, Xu Y, Huang J, Xiao Z, Komatsu G (2017) A new terrestrial analogue site for Mars research: the Qaidam Basin, Tibetan Plateau (NW China). Earth-Sci Rev 164:84–101

    Article  Google Scholar 

  • Xu K, Milliman JD, Yang Z, Xu H (2007) Climatic and anthropogenic impacts on water and sediment discharges from the Yangtze River (Changjiang), 1950–2005. In A. Gupta (ed.) Large rivers: Geomorphology and management. Wiley, Chichester, 609–626

    Chapter  Google Scholar 

  • Yatsu E (1966) Rock control in geomorphology. Sozosha, Tokyo, p. 135

    Google Scholar 

  • Yatsu E (1988) The nature of weathering: an introduction. Sozosha, Tokyo, p. 624

    Google Scholar 

  • Young RW, Wray AL, Young ARM (2009) Sandstone landforms. Cambridge University Press, Cambridge, p. 314

    Google Scholar 

  • Yu S, Oguchi CT (2009) Complex relationships between salt type and rock properties in a durability experiment of multiple-rock treatments. Earth Surf Proc Landf 34:2096–2110

    Article  Google Scholar 

  • Zemp M, Frey H, Gärtner-Roer I, Nussbaumer SU, Hoelzle M, Paul F, Haeberli W, Denzinger F, Ahlstrøm AP, Anderson B, Bajracharya S (2015) Historically unprecedented global glacier decline in the early 21st century. J Glaciol 61:745–762

    Article  Google Scholar 

  • Zhang Q, Tao Z, Ma Z, Tang W, Gao Q, Xu P, Ding J, Liu Z, Lin Y, Su D, Zheng W (2017) Influences of anthropogenic activities on dissolved silica migration in a granite-hosted basin, Hainan Island, China. Quat Int 440:99–110

    Article  Google Scholar 

  • Zheng G, Allen SK, Bao A, Ballesteros-Cánovas JA, Huss M, Zhang G, Li J, Yuan Y, Jiang L, Yu T, Chen W (2021) Increasing risk of glacial lake outburst floods from future third pole deglaciation. Nature Climate Change 11(5):411–417

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew S. Goudie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Goudie, A.S. (2022). Introduction: Geomorphology at the Start of the Twenty-First Century. In: Barbosa dos Santos, G., Fernandes Felippe, M., Marques Neto, R. (eds) Geomorphology of Brazil: Complexity, Interscale and Landscape. Springer Proceedings in Earth and Environmental Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-05178-4_1

Download citation

Publish with us

Policies and ethics