Skip to main content

Pharmaceutical Applications of Hemp

  • 56 Accesses

Abstract

Although humans have used the hemp Cannabis sativa plant for thousands of years, recently there has been a shift in the availability of hemp products that are high in secondary metabolites while maintaining low levels of the intoxicating phytocannabinoid Δ9-tetrahydrocannabinol (Δ9-THC). Historically, there have been many therapeutic applications of hemp in ethnobotanical formulations for a range of conditions. The primary compound of interest is cannabidiol (CBD), which demonstrates powerful antiepileptic properties and is the rationale behind the change in legal status enabling further production and research of hemp. The plant also contains additional phytocannabinoids, as well as other bioactive molecules including terpenes and flavonoids. There is sufficient preliminary evidence for a molecular mechanism through both the endocannabinoid system and the serotonin system; additionally, there may be non-specific interactions that occur when combinations of complex formulations are administered. The interconnected nature of the endocannabinoid system with other signaling systems in the central nervous system, immune system, and other essential peripheral functions complicates the discrete identification of specific molecular mechanisms. When evaluating the potential pharmaceutical applications of the hemp Cannabis sativa plant as a whole, it is found to be well-tolerated in human clinical settings and have vast therapeutic applications across a wide range of symptoms.

Keywords

  • Endocannabinoid system
  • Cannabidiol (CBD)
  • Terpenes
  • Flavonoids
  • Phytocannabinoids
  • Cannabigerol (CBG)
  • Pharmacology

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-031-05144-9_5
  • Chapter length: 37 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-031-05144-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 5.1
Fig. 5.2
Fig. 5.3

References

  • Abrahamov A, Abrahamov A, Mechoulam R (1995) An efficient new cannabinoid antiemetic in pediatric oncology. Life Sci 56(23–24):2097–2102

    CAS  PubMed  CrossRef  Google Scholar 

  • Agatia G, Azzarello E, Pollastri S, Tattini M (2012) Flavonoids as antioxidants in plants: location and functional significance. Plant Sci 196:67–76

    CrossRef  CAS  Google Scholar 

  • Ahn K, Johnson S, Cravatt BF (2009) Fatty acid amide hydrolase as a potential therapeutic target for the treatment of pain and CNS disorders. Expert Opin Drug Discov 4(7):763–784

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Albert PR, Vahid-Ansari F (2019) The 5-HT1A receptor: signaling to behavior. Biochimie 161:34–45

    CAS  PubMed  CrossRef  Google Scholar 

  • Anderson LL, Heblinski M, Absalom NL et al (2021) Phytocannabinoid acids display anticonvulsant activity in a mouse model of Dravet syndrome. Paper presented at the 31st international symposium of the International Cannabinoid Research Society, Jerusalem, Israel, 21–24 June 2021

    Google Scholar 

  • Aran A, Eylon M, Harel M, Polianski L, Nemirovski A, Tepper S, Schnapp A, Cassuto H, Wattad N, Tam J (2019) Lower circulating endocannabinoid levels in children with autism spectrum disorder. Mol Autism 10:2

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Assareh N, Gururajan A, Zhou C, Luo JL, Kevin RC, Arnold JC (2020) Cannabidiol disrupts conditioned fear expression and cannabidiolic acid reduces trauma-induced anxiety-related behaviour in mice. Behav Pharmacol 31(6):591–596

    CAS  PubMed  CrossRef  Google Scholar 

  • Baggelaar MP, Maccarone M, van der Stelt M (2018) 2-Arachidonoylglycerol: a signaling lipid with manifold actions in the brain. Prog Lipid Res 71:1–17

    CAS  PubMed  CrossRef  Google Scholar 

  • Bakas T, van Nieuwenhuijzen PS, Devenish SO, McGregor IS, Arnold JC, Chebib M (2017) The direct actions of cannabidiol and 2-arachidonoyl glycerol at GABA-A receptors. Pharmacol Res 119:358–370

    CAS  PubMed  CrossRef  Google Scholar 

  • Banister SD, Connor M (2018) The chemistry and pharmacology of synthetic cannabinoid receptor agonists as new psychoactive substances: origins. Handb Exp Pharmacol 252:165–190

    CAS  PubMed  CrossRef  Google Scholar 

  • Barchel D, Stolar O, De-Haan T, Ziv-Baran T, Saban N, Fuchs DO, Koren G, Berkovitch M (2019) Oral cannabidiol use in children with autism spectrum disorder to treat related symptoms and co-morbidities. Front Pharmacol 9:1521

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Barrett ML, Gordon D, Evans FJ (1985) Isolation from Cannabis sativa L. of cannflavin-a novel inhibitor of prostaglandin production. Biochem Pharmacol 34:2019–2024

    CAS  PubMed  CrossRef  Google Scholar 

  • Basu S, Dittel BN (2011) Unraveling the complexities of cannabinoid receptor 2 (CB2) immune regulation in health and disease. Immunol Res 51(1):26–38

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Baswan SM, Klosner AE, Glynn K, Rajgopal A, Malik K, Yim S, Stern N (2020) Therapeutic Potential of Cannabidiol (CBD) for Skin Health and Disorders. Clin Cosmet Investig Dermatol 13: 927–942

    Google Scholar 

  • Berger AA, Keefe J, Winnick A et al (2020) Cannabis and cannabidiol (CBD) for the treatment of fibromyalgia. Best Pract Res Clin Anaesthesiol 34(3):617–631

    PubMed  CrossRef  Google Scholar 

  • Bilodeau SE, Wu B, Rufyikiri A, MacPherson S, MacPherson S, Lefsrud M (2019) An update on plant photobiology and implications for cannabis production. Front Plant Sci 10:296

    CrossRef  Google Scholar 

  • Bisogno T, Sepe N, De Petrocellis L, Di Marzo V (1997) Biosynthesis of 2-arachidonoyl-glycerol, a novel cannabimimetic eicosanoid, in mouse neuroblastoma cells. In: Sinzinger H, Samuelsson B, Vane JR, Paoletti R, Ramwell P, Wong PYK (eds) Recent advances in prostaglandin, thromboxane, and leukotriene research. Advances in Experimental Medicine and Biology 433

    Google Scholar 

  • Bisogno T, De Petrocellis L, Marzo V (2002) Fatty acid amide hydrolase, an enzyme with many bioactive substrates possible therapeutic implications. Curr Pharm Des 8(7):533–547

    CAS  PubMed  CrossRef  Google Scholar 

  • Blessing EM, Steenkamp MM, Manzanares J, Marmar CR (2015) Cannabidiol as a Potential Treatment for Anxiety Disorders. Neurotherapeutics 12(4): 825–836

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Boggs DL, Nguyen JD, Morgenson D, Taffe MA, Ranganathan M (2018) Clinical and preclinical evidence for functional interactions of cannabidiol and Δ9-tetrahydrocannabinol. Neuropsychopharmacology 43:142–154

    CAS  PubMed  CrossRef  Google Scholar 

  • Bolognini D, Rock EM, Cluny NL, Cascio MG, Limebeer CL, Duncan M, Stott CG, Javid FA, Parker LA, Pertwee RG (2012) Cannabidiolic acid prevents vomiting in Suncus murinus and nausea-induced behaviour in rats by enhancing 5-HT1A receptor activation. Br J Pharmacol 168(6):1456–1470

    CrossRef  CAS  Google Scholar 

  • Booth JK, Bohlmann J (2019) Terpenes in Cannabis sativa—from plant genome to humans. Plant Sci 284:67–72

    CAS  PubMed  CrossRef  Google Scholar 

  • Borrelli F, Fasolino I, Romano B et al (2013) Beneficial effect of the non-psychotropic plant cannabinoid cannabigerol on experimental inflammatory bowel disease. Biochem Pharmacol 85(9):1306–1316

    CAS  PubMed  CrossRef  Google Scholar 

  • Bow EW, Rimoldi JM (2016) The structure-function relationships of classical cannabinoids: CB1/CB2 modulation. Perspect Med Chem 8:17–39

    Google Scholar 

  • Brillo V, Chieregato L, Leanza L, Muccioli S, Costa R (2021) Mitochondrial dynamics, ROS, and cell signaling: a blended overview. Life 11(4):332

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Burstein S (2008) The elmiric acids: biologically available anandamide analogs. Neuropharmacology 55(8):1259–1264

    CAS  PubMed  CrossRef  Google Scholar 

  • Busquets-Garcia A, Bains J, Marsicano G (2018) CB1 receptor signaling in the brain: extracting specificity from ubiquity. Neuropsychopharmacology 43:4–20

    CAS  PubMed  CrossRef  Google Scholar 

  • Calzolari D, Magagnini G, Lucini L, Grassi G, Appendino GB, Amaducci S (2017) High added-value compounds from Cannabis threshing residues. Ind Crops Prod 108:558–563

    CAS  CrossRef  Google Scholar 

  • Cascio MG, Marini P (2015) Biosynthesis and fate of endocannabinoids. Handb Exp Pharmacol 231:39–58

    CAS  PubMed  CrossRef  Google Scholar 

  • Chiarlone A et al (2014) A restricted population of CB1cannabinoid receptors with neuroprotective activity. Proc Natl Acad Sci USA 111(22):8257–8262

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Consroe P, Wolkin A (1977) Cannabidiol—antiepileptic drug comparisons and interactionsin experimentally induced seizures in rats. J Pharmacol Exp Ther 201(1):26–32

    CAS  PubMed  Google Scholar 

  • Correa F, Docagne F, Mestre L, Clemente D, Hernangomez M, Loria F, Guaza C (2009) A role for CB2 receptors in anandamide signaling pathways involved in the regulation of IL-12 and IL-23 in microglial cells. Biochem Pharmacol 77(1):86–100

    CAS  PubMed  CrossRef  Google Scholar 

  • Crini G, Lichtfouse E, Chanet G, Morin-Crini N (2020) Application of hemp in textiles, paper industry, insulation and building materials, horticulture, animal nutrition, food and beverages, nutraceuticals, cosmetics and hygiene, medicine, agrochemistry, energy production and environment: a review. Environ Chem Lett 18:1–26

    CrossRef  CAS  Google Scholar 

  • Cristino L, Bisogno T, Di Marzo V (2020) Cannabinoids and the expanded endocannabinoid system in neurological disorders. Nat Rev Neurol 16:9–29

    PubMed  CrossRef  Google Scholar 

  • Cunha JM, Carlini EA, Pereira AE, Ramos OL, Pimentel C, Gagliardi R, Sanvito WL, Lander N, Mechoulam R (1980) Chronic administration of cannabidiol to healthy volunteers and epileptic patients. Pharmacology 21:175–185

    CAS  PubMed  CrossRef  Google Scholar 

  • De Petrocellis L, Ligresti A, Moriello AS, Allara M, Bisogno T, Petrosino S, Stott CG, Di Marzo V (2010) Effects of cannabinoids and cannabinoid-enriched Cannabis extracts on TRP channels and endocannabinoid metabolic enzymes. Br J Pharmacol 163(7):1479–1494

    CrossRef  CAS  Google Scholar 

  • De Petrocellis L, Orlando P, Schlano Moriello A, Aviello G, Scott C, Izzo AA, DiMarzo V (2011) Cannabinoid actions at TRPV channels: effects on TRPV3 and TRPV4 and their potential relevance to gastrointestinal inflammation. Acta Physiol 204(2):255–266

    CrossRef  CAS  Google Scholar 

  • Do Y, McKallip RJ, Nagarkatti M, Nagarkatti PS (2004) Activation through cannabinoid receptors 1 and 2 on dendritc cells triggers NF-kappaB-dependent apoptosis: novel role for endogenous and exogenous cannabinoids in immunoregulation. J Immunol 173(4):2373–2382

    CAS  PubMed  CrossRef  Google Scholar 

  • Eggers C, Fujitanib M, Katob R, Smida S (2019) Novel cannabis flavonoid, cannflavin A displays both a hormetic and neuroprotective profile against amyloid β-mediated neurotoxicity in PC12 cells: comparison with geranylated flavonoids, mimulone and idplacone. Biochem Pharmacol 169:113609

    CAS  PubMed  CrossRef  Google Scholar 

  • Elmes MW, Kaczocha M, Berger WT, Leung K, Ralph BP, Wang L, Sweeney JM, Miyauchi JT, Tsirka SE, Ojima I, Deutsch DG (2015) Fatty acid-binding proteins are intracellular carriers for Δ9-tetrayhydrocannabinol (THC) and cannabidiol (CBD). J Biol Chem 290(13):8711–8721

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Elsaid S, Kloiber S, Foll BL (2019) Chapter Two—Effects of cannabidiol (CBD) in neuropsychiatric disorders: a review of pre-clinical and clinical findings. Prog Mol Biol Transl Sci 167: 25–75

    Google Scholar 

  • Erzen M, Kosir IJ, Ocvirk M, Kreft S, Cerenak A (2021) Metabolomic analysis of cannabinoid and essential oil profiles in different hemp (Cannabis sativa L.) phenotypes. Plants 10(50):966

    Google Scholar 

  • Fairbairn JW, Pickens JT (1981) Activity of cannabis in relation to its delta-trans-tetrahydro-cannabinol content. Br J Pharmacol 72:401–409

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Farrimond JA, Whalley BJ, Williams CM (2012) Cannabinol and cannabidiol exert opposing effects on rat feeding patterns. Psychopharmacology 223:117–129

    CAS  PubMed  CrossRef  Google Scholar 

  • Flores-Sanchez IJ, Verpoorte R (2008) PKS activities and biosynthesis of cannabinoids and flavonoids in Cannabis sativa L. plants. Plant Cell Physiol 49:1767–1782

    CAS  PubMed  CrossRef  Google Scholar 

  • Frassinetti S, Moccia E, Caltavuturo L, Gabriele M, Longo V, Bellani L, Giorgi G, Giorgetti L (2018) Nutraceutical potential of hemp (Cannabis sativa L.) seeds and sprouts. Food Chem 262:56–66

    CAS  PubMed  CrossRef  Google Scholar 

  • Galindo L, Moreno E, Lopez-Armenta F et al (2018) Cannabis users show enhanced expression of CB1-5HT2A receptor heteromers in olfactory neuroepithelium cells. Mol Neurobiol 55:6347–6361

    CAS  PubMed  CrossRef  Google Scholar 

  • Gertsch J, Leonti M, Raduner S et al (2008) Beta-caryophyllene is a dietary cannabinoid. Proc Natl Acad Sci USA 105(26):9099–9104

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ghosh S, Preet A, Groopman JE, Ganju RK (2006) Cannabinoid receptor Cb2 modulates the CXCL12/CXCR4-mediated chemotaxis of T lymphocytes. Mol Immunol 43(14):2169–2179

    CAS  PubMed  CrossRef  Google Scholar 

  • Gil-Ordonez A, Martin-Fontecha M, Ortega-Gutierrez S, Lopez-Rodriguez ML (2018) Monoacylglycerol lipase (MAGL) as a promising therapeutic target. Biochem Pharmacol 157:18–32

    CAS  PubMed  CrossRef  Google Scholar 

  • Gorelik A, Gebai A, Illes K, Piomelli D, Nagar B (2018) Molecular mechanism of activation of the immunoregulatory amidase NAAA. Proc Natl Acad Sci USA 115(43):E10032-10040

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Gulyas AI, Cravatt BF, Bracey MH, Dinh TP, Piomelli D, Boscia F, Freund TF (2004) Segregation of the two endocannabinoid-hydrolyzing enzymes into pre- and postsynaptic compartments in the rat hippocampus, cerebellum and amygdala. Eur J Neurosci 20(2):441–458

    CAS  PubMed  CrossRef  Google Scholar 

  • Gunduz-Cinar O (2020) The endocannabinoid system in amygdala and modulation of fear. Prog Neuropsychopharmacol Biol Psychiatry 105:110116

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Haj-Dahmane S, Shen R-Y (2012) Modulation of the serotonin system by endocannabinoid signaling. Neuropharmacology 61(3):414–420

    CrossRef  CAS  Google Scholar 

  • Hallak JE, Machado-de-Sousa JP, Crippa JA et al (2010) Performance of schizophrenic patients in the Stroop color word test and electrodermal responsiveness after acute administration of cannabidiol (CBD). Braz J Psychiatry 32(1):56–61

    PubMed  CrossRef  Google Scholar 

  • Hanna VS, Hafez EAA (2018) Synopsis of arachidonic acid metabolism: a review. J Adv Res 11:23–32

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Harirforoosh S, Asghar W, Jamali F (2013) Adverse effects of nonsteroidal antiinflammatory drugs: an update of gastrointestinal, cardiovascular and renal complications. J Pharm Pharm Sci 16(5):821–847

    PubMed  CrossRef  Google Scholar 

  • Hecker H (1980) Ananda: the guardian of the Dhamma. Buddhist Publication Society, Kandy, Sri Lanka

    Google Scholar 

  • Hendricks O, Andersen TE, Christiansen AA et al (2019) Efficacy and safety of cannabidiol followed by an open label add-on of tetrahydrocannabinol for the treatment of chronic pain in patients with rheumatoid arthritis or ankylosing spondylitis: protocol for a multicentre, randomized, placebo-controlled study. BMJ Open 9:e028197

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Hillard CJ (2015) Endocannabinoids and the endocrine system in health and disease. Handb Exp Pharmacol 231:317–339

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Hollister LE, Gillespie HK (1973) Delta-8- and delta-9-tetrahydrocannabinol comparison in man by oral and intravenous administration. Clin Pharmacol Ther 14(3):353–357

    CAS  PubMed  CrossRef  Google Scholar 

  • Hughes B (2018) Cannabis legislation in Europe: an overview. European monitoring centre for drugs and drug addiction. Publications Office of the European Union, Luxembourg

    Google Scholar 

  • Huizenga M, Forcelli P (2018) Age-dependent anti-seizure and neuroprotective effect of cannabidivarin in neonatal rats. FASEB J 32(51):825.6

    Google Scholar 

  • Ibeas Bih C, Chen T, Nunn AVW et al (2015) Molecular targets of cannabidiol in neurological disorders. Neurotherapeutics 12:699–730

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Ivy KD, Ross SA, Ahmed S et al (2008) Evaluation of delta9-tetrahydrocannabinol and other cannabinoids for antidepressant-like actions in the mouse forced swim test. Planta Medica 74:P-28

    Google Scholar 

  • Jin D, Dai K, Xie Z, Chen J (2020) Secondary metabolites profiled in cannabis inflorescences, leaves, stem barks, and roots for medicinal purposes. Sci Rep 10(1):3309

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Johnson R (2019) Defining hemp: a fact sheet. Congressional Research Service, R44742

    Google Scholar 

  • Jordan CJ, Xi Z-X (2019) Progress in brain cannabinoid CB2 receptor research: from genes to behavior. Neurosci Behav Rev 98:208–220

    CAS  CrossRef  Google Scholar 

  • Kaczocha M, Vivieca S, Sun J, Glaser ST, Deutsch DG (2012) Fatty acid-binding proteins transport N-aceylethanolamines to nuclear receptors and are targets of endocannabinoid transport inhibitors. J Biol Chem 287(5):3415–3424

    CAS  PubMed  CrossRef  Google Scholar 

  • Kailash R, Tripathi P (2020) A perspective review on fatty acid amide hydrolase (FAAH) inhibitors as potential therapeutic agents. Eur J Med Chem 188:111953

    CrossRef  CAS  Google Scholar 

  • Kamatou GPP, Viljoen AM (2008) Linalool—a review of a biologically active compound of commercial importance. Nat Prod Commun 3(7):ePub

    Google Scholar 

  • Kane VV, Martin AR, Peters JA, Crews P (1984) Carbon-13 nuclear magnetic resonance spectra of cannabichromene, cannabicitran, and cannabicyclol and their analogs. J Org Chem 49(10):1793–1796

    CAS  CrossRef  Google Scholar 

  • Khajehali E, Malone DT, Glass M, Sexton PM, Christopoulos A, Leach K (2015) Biased agonism and biased allosteric modulation at the CB1 cannabinoid receptor. Mol Pharmacol 88(2):368–379

    CAS  PubMed  CrossRef  Google Scholar 

  • Khan R, Naveed S, Mian N, Fida A, Raafey MA, Aedma KK (2020) The therapeutic role of cannabidiol in mental health: a systematic review. J Cannabis Res 2:2

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Khoo HE, Azlan A, Tang ST, Lim SM (2017) Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr Res 61(1):1361779

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Kind L, Kursula P (2019) Structural properties and role of the endocannabinoid lipases ABHD6 and ABHD12 in lipid signalling and disease. Amino Acids 51:151–174

    CAS  PubMed  CrossRef  Google Scholar 

  • Komarnytsky S, Rathinasabapathy T, Wagner C, Metzger B, Carlisle C, Panda C, Brun-Blashka SL, Troup JP, Varadharaj S (2021) Endocannabinoid system and its regulation by polyunsaturated fatty acids and full spectrum hemp oils. Int J Mol Sci 22:5479

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Lattanzi S, Brigo F, Trinka E, Zaccara G, Cagnetti C, Giovane CD, Silvestrini M (2018) Efficacy and Safety of Cannabidiol in Epilepsy: A Systematic Review and Meta-Analysis. Drugs 78(17): 1791–1804

    Google Scholar 

  • Lowe H, Steele B, Bryant J, Toyang N, Ngwa W (2021) Non-cannabinoid metabolites of cannabis sativa L. with therapeutic potential. Plants 10:400

    Google Scholar 

  • Lu H-C, Mackie K (2021) Review of the endocannabinoid system. Biol Psychiatry: Cogn Neurosci Neuroimaging 6(6):607–615

    Google Scholar 

  • Luchicchi A, Pistis M (2012) Anandamide and 2-arachidonoylglycerol: pharmacological properties, functional features, and emerging specificities of the two major endocannabinoids. Mol Neurobiol 46:374–392

    CAS  PubMed  CrossRef  Google Scholar 

  • Maa E, Figi P (2014) The case for medical marijuana in epilepsy. Epilepsia 55(6):783–786

    PubMed  CrossRef  Google Scholar 

  • Manikandan P, Nagini S (2018) Cytochrome P450 structure, function and clinical significance: a review. Curr Drug Targets 19(1):38–54

    CAS  PubMed  CrossRef  Google Scholar 

  • Marsicano G (2021) A cannabinoid link between brain bioenergetics and behavior. Paper presented at the 31st international symposium of the International Cannabinoid Research Society, Jerusalem, Israel, 21–24 June 2021

    Google Scholar 

  • Martin LJ, Banister SD, Bowen MT (2021) Understanding the complex pharmacology of cannabidiol: mounting evidence suggests a common binding site with cholesterol. Pharmacol Res 166:105508

    CAS  PubMed  CrossRef  Google Scholar 

  • Martinez V, De-Hond AI, Borrelli F, Capasso R, del Castillo M, Abalo R (2020) Cannabidiol and other non-psychoactive cannabinoids for prevention and treatment of gastrointestinal disorders: useful neutraceuticals? Int J Mol Sci 21:3067

    CAS  PubMed Central  CrossRef  Google Scholar 

  • Mato S, Aso E, Castro E, Martin M, Valverde O, Maldonado R, Pazos A (2007) CB1 knockout mice display impaired functionality of 5-HT1A and 5-HT2A/C receptors. J Neurochem 103(5):2111–2020

    CAS  PubMed  CrossRef  Google Scholar 

  • Mavromoustakos T, Papahatjis D, Laggner P (2001) Differential membrane fluidization by active and inactive cannabinoid analogues. Biochim Biophys Acta—Biomembr 1512(2):183–190

    Google Scholar 

  • McGuire P, Robson P, Cubala WJ et al (2018) Cannabidiol (CBD) as an adjunctive therapy in schizophrenia: a multicenter randomized controlled trial. Am J Psychiatry 175(3):2225–2231

    CrossRef  Google Scholar 

  • Mechoulam R, Gaoni Y (1967) Recent advances in the chemistry of hashish. Prog Chem Org Nat Prod 25:175–213

    CAS  Google Scholar 

  • Mendizabal-Zubiaga J, Mesler S, Benard G et al (2016) Cannabinoid CB1 receptors are localized in striated muscle mitochondria and regulate mitochondrial respiration. Front Physiol 7:476

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Mierziak J, Kostyn K, Kulma A (2014) Flavonoids as important molecules of plant interactions with the environment. Molecules 19(10):16240–16265

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Milligan G (2006) G-protein-coupled receptor heterodimers: pharmacology, function and relevance to drug discovery. Drug Discovery Today 11(11–12):541–549

    CAS  PubMed  CrossRef  Google Scholar 

  • Morales P, Reggio P (2017) An update on non-CB1, non-CB2 cannabinoid related G-protein-coupled receptors. Cannabis Cannabinoid Res 2(1):265–273

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Moreno-Sanz G (2016) Can you pass the acid test? Critical review and novel therapeutic perspectives of Δ9-tetrayhydrocannabinol acid A. Cannabis Cannabinoid Res 1(1):124–130

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Morel A, Lebard P, Dereux A, Azuar J, Questel F, Bellivier F, Marie-Claire C, Fatséas M, Vorspan F, Bloch V (2021) Clinical Trials of Cannabidiol for Substance Use Disorders: Outcome Measures, Surrogate Endpoints, and Biomarkers. Front Psychiatry 12(109): 2-11

    Google Scholar 

  • Muller C, Morales P, Reggio PH (2018) Cannabinoid ligands targeting TRP channels. Front Mol Neurosci 11:487

    CAS  PubMed  CrossRef  Google Scholar 

  • Nahler G, Jones TM, Russo EB (2019) Cannabidiol and contributions of major hemp phytocompounds to the “entourage effect”; possible mechanisms. J Altern Complement Integr Med 5:070

    Google Scholar 

  • Navarro G, Varani K, Lillo A et al (2020) Pharmacological data of cannabidiol- and cannabigerol-type phytocannabinoids acting on cannabinoid CB1, CB2, and CB1/CB2 heteromer receptors. Pharmacol Res 159:104940

    CAS  PubMed  CrossRef  Google Scholar 

  • Nuutinen T (2018) Medicinal properties of terpenes found in Cannabis sativa an Humulus lupulus. Eur J Med Chem 157:198–228

    CAS  PubMed  CrossRef  Google Scholar 

  • Olah A, Markovics A, Szabo-Papp J, Szabo PT, Stott C, Zouboulis CC, Biro T (2016) Differential effectiveness of selected non-psychotropic phytocannabinoids on human sebocyte functions implicates their introduction in dry/seborrheic skin and acne treatment. Exp Dermatol 25(9):701–707

    CAS  PubMed  CrossRef  Google Scholar 

  • Oleson EB, Hamilton LR, Gomez DM (2021) Cannabinoid modulation of dopamine release during motivation, periodic reinforcement, exploratory behavior, habit formation, and attention. Front Synaptic Neurosci 13:660218

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Pain S (2015) A potted history. Nature 525(7570):S10–S12

    CAS  PubMed  CrossRef  Google Scholar 

  • Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview. J Nutr Sci 5:e47

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Park JY, Lee SY, Kim HR et al (2016) Structural mechanism of GPCR-arrestin interaction: recent breakthroughs. Arch Pharm Res 39:293–301

    CAS  PubMed  CrossRef  Google Scholar 

  • Pellati F, Bringhenti V, Sperlea J, Marchetti L, Bertelli D, Benvenuti S (2018) New methods for the comprehensive analysis of bioactive compounds in Cannabis sativa L. (hemp). Molecules 23(10):2639

    Google Scholar 

  • Pennacchio M, Jefferson L, Havens K (2010) Uses and abuses of plant-derived smoke: its ethnobotany as hallucinogen, perfume, incense, and medicine. Oxford University Press

    Google Scholar 

  • Piomelli D, Scalvini L, Fotio Y, Lodola A, Spadoni G, Tarzia G, Mor M (2020) N-acylethanolamine acid amidase (NAAA): structure, function, and inhibition. J Med Chem 63(14):7475–7490

    CAS  PubMed  CrossRef  Google Scholar 

  • Pollastro F, Caprioglio D, Del Prete D, Rogati F, Minassi A, Taglialatela-Scafati O, Munoz E, Appendino G (2018a) Cannabichromene. Nat Prod Commun 13(9):1189–1194

    Google Scholar 

  • Pollastro F, Minassi A, Grazia F (2018b) Cannabis phenolics and their Bioactivates. Curr Med Chem 25(10):1160–11185

    CAS  PubMed  CrossRef  Google Scholar 

  • Raborn ES, Marciano-Cabral F, Buckley NE, Martin BR, Cabral GA (2008) The cannabinoid delta-9-tetrahydrocannabinol mediates inhibition of macrophage chemotaxis to RANTES/CCL5 through the CB2 receptor. J Neuroimmune Pharmacol 3(2):117–129

    PubMed  CrossRef  Google Scholar 

  • Rea KA, Casaretto JA, Al-Abdul-Wahid MS, Sukumaran A, Geddes-McAlister J, Rothstein SJ (2019) Biosynthesis of cannflavins A and B from Cannabis sativa L. Phytochemistry 164:162–171

    CAS  PubMed  CrossRef  Google Scholar 

  • Resstel LBM, Tavares RF, Lisboa SFS, Joca SRL, Correa FMA, Guimaraes FS (2009) 5-HT1A receptors are involved in the cannabidiol-induced attenuation of behavioural and cardiovascular responses to acute restraint stress in rats. Br J Pharmacol 156(1):181–186

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Romano B, Borrelli F, Fasolino I et al (2013) The cannabinoid TRPA1 agonist cannabichromene inhibits nitric oxide production in macrophages and ameliorates murine colitis. Br J Pharmacol 169(1):213–229

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Russo EB (2014) The pharmacological history of cannabis. In: Pertwee RG (ed) Handbook of cannabis, 1st edn. New York, New York

    Google Scholar 

  • Russo EB (2016) Clinical endocannabinoid deficiency reconsidered: current research supports the theory in migraine, fibromyalgia, irritable bowel, and other treatment-resistant syndromes. Cannabis Cannabinoid Res 1(1):154–165

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Russo EB, Burnett A, Hall B, Parker KK (2005) Agonistic properties of cannabidiol at 5-HT1A receptors. Neurochem Res 30(8):1037–1043

    CAS  PubMed  CrossRef  Google Scholar 

  • Ryskamp DA, Redmon S, Jo AO, Krizaj D (2014) TRPV1 and endocannabinoids: emerging molecular signals that modulate mammalian vision. Cells 3(3):914–938

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Saario SM, Laitinen JT (2007) Therapeutic potential of endocannabinoid-hyrolysing enzyme inhibitors. Basic Clin Pharmacol Toxicol 101(5):287–293

    CAS  PubMed  CrossRef  Google Scholar 

  • Salem MM, Capers J, Rito S, Werbovetz K (2011) Antiparasitic activity of C-geranyl flavonoids from Mimulus bigelovii. Phytother Res 25:1246–1249

    CAS  PubMed  CrossRef  Google Scholar 

  • Santoro A, Mele E, Marino M, Viggiano A, Nori SL, Meccariello R (2021) The complex interplay between endocannabinoid system and the estrogen system in central nervous system and periphery. Int J Mol Sci 22:972

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Savinainen JR, Saario SM, Laitinen JT (2012) The serine hydrolases MAGL, ABHD6, and ABHD12 as guardians of 2-arachidonoylglycerol signalling through cannabinoid receptors. Acta Physiol (oxford) 204(2):267–276

    CAS  CrossRef  Google Scholar 

  • Scherma M, Masia P, Satta V, Fratta W, Fadda P, Tanda G (2019) Brain activity of anandamide: a rewarding bliss? Acta Pharmacol Sin 40:309–323

    Google Scholar 

  • Schilling JM, Hughes CG, Wallace MS, Sexton M, Backonja M, Moeller-Bertram T (2021) Cannabidiol as a treatment for chronic pain: a survey of patients’ perspectives and attitudes. J Pain Res 14:1241–1250

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Serpell M, Ratcliffe S, Hovorka J, Schofield M, Taylor L, Lauder H, Ehler E (2014) A double-blind, randomized, placebo-controlled, parallel group study of THC/CBD spray in peripheral neuropathic pain treatment. Eur J Pain 18(7): 999–1012

    CAS  CrossRef  PubMed  Google Scholar 

  • Shoemaker JL, Ruckle MB, Mayeaux PR, Prather PL (2005) Agonist-directed trafficking of response by endocannabinoids acting at CB2 receptors. J Pharmacol Exp Ther 15(2):828–838

    CrossRef  CAS  Google Scholar 

  • Silvestro S, Mammana S, Cavalli E, Bramanti P, Mazzon E (2019) Use of cannabidiol in the treatment of epilepsy: efficacy and security in clinical trials. Molecules 24(8):1459

    CAS  PubMed Central  CrossRef  Google Scholar 

  • Sleno R, Hebert TE (2019) Shaky ground—the nature of metastable GPCR signalling complexes. Neuropharmacology 152:4–14

    CAS  PubMed  CrossRef  Google Scholar 

  • Sugiura T, Kishimoto S, Oka S, Gokoh M, Waku K (2004) Metabolism and physiological significance of anandamide and 2-arachidonoylglycerol, endogenous cannabinoid receptor ligands. In: Fonteh AN, Wykle RL (eds) Arachidonate remodeling and inflammation. Progress in Inflammation Research. Birkhauser, Basel

    Google Scholar 

  • Suraev A, Lintzeris N, Stuart J, Kevin RC, Blackburn R, Richards E, Arnold JC, Ireland C, Todd L, Allsop DJ, McGregor IS (2018) Composition and Use of Cannabis Extracts for Childhood Epilepsy in the Australian Community. Sci Rep 8: 10154

    Google Scholar 

  • Takeda S, Misawa K, Yamamoto I, Watanabe K (2008) Canabidiolic acid as a selective cyclooxygenase-2 inhibitory component in cannabis. Drug Metab Dispos 36(9):1917–1921

    CAS  PubMed  CrossRef  Google Scholar 

  • Takeda S, Okajima S, Miyoshi H et al (2012) Cannabidiolic acid, a major cannabinoid in fiber-type cannabis, is an inhibitor of MDA-MB-231 breast cancer cell migration. Toxicol Lett 214(3):314–319

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Takeda S, Okazaki H, Ikeda E, Abe S, Yoshioka Y, Watanabe K, Aramaki H (2014) Down-regulation of cyclooxygenase-2 (COX-2) by cannabidiolic acid in human breast cancer cells. Toxicomics Rep 39(5):711–716

    CAS  Google Scholar 

  • Thomas G, Betters JL, Lord CC et al (2013) The serine hydrolase ABHD6 is a critical regulator of the metabolic syndrome. Cell Rep 5(2):508–520

    CAS  PubMed  CrossRef  Google Scholar 

  • Tiburu EK, Gulla SV, Tiburu M, Janero DR, Budil DE, Makriyannis A (2009) Dynamic conformational responses of a human cannabinoid receptor-1 helix domain to its membrane environment. Biochemistry 48(22):4895–4904

    CAS  PubMed  CrossRef  Google Scholar 

  • Tominaga M, Tominaga T (2005) Structure and function of TRPV1. Pflugers Arch—Eur J Physiol 451:143–150

    Google Scholar 

  • Tuduri E, Imbernon M, Hernandez-Bautista RJ, Tojo M, Ferno J, DIeguez C, Nogueiras R (2017) GPR55: a new promising target for metabolism? J Mol Endocrinol 58:R191–R202

    Google Scholar 

  • Turner CE, ElSohly MA (1981) Biological activity of cannabichromene, its homologs and isomers. J Clin Pharmacol 21(S1):283S-291S

    CAS  PubMed  CrossRef  Google Scholar 

  • Tzadok M, Uliel-Siboni S, Linder I, Kramer U, Epstein O, Menascu S, Nissenkorn A, Yosef OB, Hyman E, Granot D, Dor M, Lerman-Sagie T, Ven-Zeev B (2016) CBD-enriched medical cannabis for intractable pediatric epilepsy: The current Israeli experience. Seizure 35: 41–44

    CrossRef  PubMed  Google Scholar 

  • Upton RH et al (ed) (2013) American herbal pharmacopoeia. Cannabis inflorescence (Cannabis spp.): standards of identity, analysis, and quality control

    Google Scholar 

  • Überall MA (2020) A Review of Scientific Evidence for THC:CBD Oromucosal Spray (Nabiximols) in the Management of Chronic Pain. J Pain Res13: 399-410 

    CrossRef  Google Scholar 

  • Valdeolivas S, Navarrete C, Cantarero I, Bellido ML, Munoz E, Sagredo O (2015) Neuroprotective properties of cannabigerol in Huntington’s disease: studies in R6/2 mice and 3-nitropropionate-lesioned mice. Neurotherapeutics 12:185–199

    CAS  PubMed  CrossRef  Google Scholar 

  • Van Dolah HJ, Bauer BA, Mauck KF (2019) Clinicians’ guide to cannabidiol and hemp oils. Mayo Clin Proc 94(9):1840–1851

    CrossRef  CAS  Google Scholar 

  • Van Ginneken CAH, Vree TB, Breimer DD, Thijssen HWH, Van Rossum JM (1972) Cannabinodiol, a new hashish constituent, identified by chromatography-mass spectrometry. Paper presented at the proceedings of the international symposium on gas chromatography and mass spectrometry, Isle of Elba, Italy

    Google Scholar 

  • Wei D, Lee D, Cox CD, Karsten CA, Penagarikano O, Geschwind DH, Gall CM, Piomelli D (2015) Endocannabinoid signaling mediates oxytocin-driven social reward. Proc Natl Acad Sci USA 112(45):14084–14089

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Werz O, Seegers J, Schaible AM, Weinigel C, Barz D, Koeberle A, Allegrone G, Pollastro F, Zampieri L, Grassi G, Appendino G (2014) Cannflavins from hemp sprouts, a novel cannabinoid-free hemp food product, target microsomal prostaglandin E2 synthase-1 and 5-lipoxygenase. PharmaNutrition 2:53–60

    CAS  CrossRef  Google Scholar 

  • Wirth PW, Watson S, ElSohly M, Turner CE, Murphy JC (1980) Anti-inflammatory properties of cannabichromene. Life Sci 26(23):1991–1995

    CAS  PubMed  CrossRef  Google Scholar 

  • Yamaguchi T, Hagiwara Y, Tanaka H, Sugiura T, Waku K, Shoyama Y, Watanabe S, Yamamoto T (2001) Endogenous cannabinoid, 2-arachidonoylglycerol, attenuates naloxone-precipitated withdrawal signs in morphine-dependent mice. Brain Res 909(1–2):121–126

    CAS  PubMed  CrossRef  Google Scholar 

  • Yamaori S, Kishihara M, Yamamoto I, Watanabe K (2010) Characterization of major phytocannabinoids, cannabidiol and cannabinol, as isoform-selective and potent inhibitors of human CYP1 enzymes. Biochem Pharmacol 79(11):1691–1698

    CAS  PubMed  CrossRef  Google Scholar 

  • Yang YR, Follow MY, Cocco L, Suh P-G (2013) The physiological roles of primary phospholipase C. Adv Biol Regul 53(3):232–241

    CAS  PubMed  CrossRef  Google Scholar 

  • Yang X, Jiang Y, Yang J, He J, Sun J, Chen F, Zhang M, Yang B (2015) Prenylated flavonoids, promising nutraceuticals with impressive biological activities. Trends Food Sci Technol 1–12

    Google Scholar 

  • Yoshida H, Usami N, Ohishi Y, Watanabe K, Yamamoto I, Yoshimura H (1995) Synthesis and pharmacological effects in mice of halogenated cannabinol derivatives. Chem Pharm Bull 43(2):335–337

    CAS  CrossRef  Google Scholar 

  • Yu M, Gouvinhas I, Rocha J, Barros A (2021) Phytochemical and antioxidant analysis of medicinal and food plants towards bioactive food and pharmaceutical resources. Sci Rep 11:10041

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Zagzoog A, Mohamed KA, Kim HJJ, Kim ED, Frank CS, Black T, Jadhav PD, Holbrook LA, Laprairie RB (2020) In vitro and in vivo pharmacological activity of minor cannabinoids isolated from Cannabis sativa. Sci Rep 10:20405

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Zamberletti E, Rubino T, Parolaro D (2021) Therapeutic potential of cannabidivarin for epilepsy and autism spectrum disorder. Pharmacol Ther 226:107878

    CAS  PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Miyabe Shields .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Miyabe Shields, C., Kirk, R.D. (2022). Pharmaceutical Applications of Hemp. In: Belwal, T., Belwal, N.C. (eds) Revolutionizing the Potential of Hemp and Its Products in Changing the Global Economy. Springer, Cham. https://doi.org/10.1007/978-3-031-05144-9_5

Download citation