Skip to main content

Integrated Biorefinery and Bioethanol Production

  • Chapter
  • First Online:
Bioethanol Production

Abstract

The need for alternative renewable resources has grown in response to rising energy demand and depleted petroleum sources. Integrated biorefinery is an ideal approach for this where production of bioethanol can be done along with different products. Though no doubt, there are many shortcomings in the way like higher production costs but development and advancements in different technical methods of saccharification and recovery can overcome such hurdles. This chapter focuses on the concept of biorefinery, different types of biorefineries, and production of bioethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhaskar, T., Bhavya, B., Singh, R., Naik, D. V., Kumar, A., & Goyal, H. B. (2011). Thermochemical conversion of biomass to biofuels. In Biofuels (pp. 51–77). Academic Press.

    Google Scholar 

  2. Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D.W., Haywood, J., Lean, J., Lowe, D.C., Myhre, G., & Nganga, J. (2007). Changes in atmospheric constituents and in radiative forcing. Chapter 2. In Climate change 2007. The physical science basis.

    Google Scholar 

  3. Pandey, A., Larroche, C., & Ricke, S. C. (Eds.). (2011). Biofuels: alternative feedstocks and conversion processes. Academic Press.

    Google Scholar 

  4. Thomsen, M. H. (2005). Complex media from processing of agricultural crops for microbial fermentation. Applied Microbiology and Biotechnology, 68(5), 598–606.

    Article  CAS  Google Scholar 

  5. Chandel, A. K., Garlapati, V. K., Singh, A. K., Antunes, F. A. F., & da Silva, S. S. (2018). The path forward for lignocellulose biorefineries: Bottlenecks, solutions, and perspective on commercialization. Bioresource Technology, 264, 370–381.

    Article  CAS  Google Scholar 

  6. Isikgor, F. H., & Becer, C. R. (2015). Lignocellulosic biomass: A sustainable platform for the production of bio-based chemicals and polymers. Polymer Chemistry, 6(25), 4497–4559.

    Article  CAS  Google Scholar 

  7. Lindorfer, J., Lettner, M., Fazeni, K., Rosenfeld, D., Annevelink, B., & Mandl, M. (2019). Technical, economic and environmental assessment of biorefinery concepts; IEA bioenergy: Paris, France.

    Google Scholar 

  8. Concepts, E. B. (2017). European Technology and Innovation Platform Bioenergy: Gülzow, Germany.

    Google Scholar 

  9. Roadmap, B. (2012). German Federal Government action plans for the material and energetic utilisation of renewable raw materials.

    Google Scholar 

  10. Kromus, S., Wachter, B., Koschuh, W., Mandl, M., Krotscheck, C., & Narodoslawsky, M. (2004). The green biorefinery Austria-development of an integrated system for green biomass utilization. Chemical and Biochemical Engineering Quarterly, 18(1), 8–12.

    Google Scholar 

  11. Koller, M., Bona, R., Hermann, C., Horvat, P., Martinz, J., Neto, J., Pereira, L., Varila, P., & Braunegg, G. (2005). Biotechnological production of poly (3-hydroxybutyrate) with Wautersia eutropha by application of green grass juice and silage juice as additional complex substrates. Biocatalysis and Biotransformation, 23(5), 329–337.

    Article  CAS  Google Scholar 

  12. Yüksel, F., & Yüksel, B. (2004). The use of ethanol–gasoline blend as a fuel in an SI engine. Renewable Energy, 29(7), 1181–1191.

    Article  Google Scholar 

  13. Khuong, L. S., Masjuki, H. H., Zulkifli, N. W. M., Mohamad, E. N., Kalam, M. A., Alabdulkarem, A., Arslan, A., Mosarof, M. H., Syahir, A. Z., & Jamshaid, M. (2017). Effect of gasoline–bioethanol blends on the properties and lubrication characteristics of commercial engine oil. RSC Advances, 7(25), 15005–15019.

    Article  CAS  Google Scholar 

  14. Kummamuru, B. (2016). WBA global bioenergy statistics 2017. World Bioenergy Association.

    Google Scholar 

  15. Outlook, O.F.A. (2010). © OECD/FAO 2010.

    Google Scholar 

  16. Zabed, H., Sahu, J. N., Suely, A., Boyce, A. N., & Faruq, G. (2017). Bioethanol production from renewable sources: Current perspectives and technological progress. Renewable and Sustainable Energy Reviews, 71, 475–501.

    Article  CAS  Google Scholar 

  17. Menon, V., & Rao, M. (2012). Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Progress in energy and combustion science38(4), 522–550.

    Google Scholar 

  18. Alvarado-Morales, M., Terra, J., Gernaey, K. V., Woodley, J. M., & Gani, R. (2009). Biorefining: Computer aided tools for sustainable design and analysis of bioethanol production. Chemical Engineering Research and Design, 87(9), 1171–1183.

    Article  CAS  Google Scholar 

  19. Yang, B., & Wyman, C. E. (2008). Pretreatment: The key to unlocking low-cost cellulosic ethanol. Biofuels, Bioproducts and Biorefining: Innovation for a Sustainable Economy, 2(1), 26–40.

    Article  CAS  Google Scholar 

  20. Lin, C., & Luque, R. (Eds.). (2014). Renewable resources for biorefineries (No. 27). Royal Society of Chemistry.

    Google Scholar 

  21. Shah, A., Patel, H., & Narra, M. (2017). Bioproduction of fungal cellulases and hemicellulases through solid state fermentation. Fungal Metabolites, 349, 393.

    Google Scholar 

  22. Saini, J. K., Saini, R., & Tewari, L. (2015). Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech5(4), 337–353.

    Google Scholar 

  23. Chukwuma, O. B., Rafatullah, M., Tajarudin, H. A., & Ismail, N. (2020). Lignocellulolytic enzymes in biotechnological and industrial processes: A review. Sustainability, 12(18), 7282.

    Article  CAS  Google Scholar 

  24. Lopes, A. D. M., Ferreira Filho, E. X., & Moreira, L. R. S. (2018). An update on enzymatic cocktails for lignocellulose breakdown. Journal of Applied Microbiology, 125(3), 632–645.

    Article  CAS  Google Scholar 

  25. Masran, R., Bahrin, E. K., Ibrahim, M. F., Phang, L. Y., & Abd-Aziz, S. (2020). Simultaneous pretreatment and saccharification of oil palm empty fruit bunch using laccase-cellulase cocktail. Biocatalysis and Agricultural Biotechnology, 29, 101824.

    Article  Google Scholar 

  26. Hideno, A., Inoue, H., Tsukahara, K., Fujimoto, S., Minowa, T., Inoue, S., Endo, T., & Sawayama, S. (2009). Wet disk milling pretreatment without sulfuric acid for enzymatic hydrolysis of rice straw. Bioresource Technology, 100(10), 2706–2711.

    Article  CAS  Google Scholar 

  27. Rezania, S., Oryani, B., Cho, J., Talaiekhozani, A., Sabbagh, F., Hashemi, B., Rupani, P. F., & Mohammadi, A. A. (2020). Different pretreatment technologies of lignocellulosic biomass for bioethanol production: An overview. Energy, 199, 117457.

    Article  CAS  Google Scholar 

  28. Nosratpour, M. J., Karimi, K., & Sadeghi, M. (2018). Improvement of ethanol and biogas production from sugarcane bagasse using sodium alkaline pretreatments. Journal of environmental management, 226, 329–339.

    Article  CAS  Google Scholar 

  29. Smuga-Kogut, M., Walendzik, B., Szymanowska-Powalowska, D., Kobus-Cisowska, J., Wojdalski, J., Wieczorek, M., & Cielecka-Piontek, J. (2019). Comparison of bioethanol preparation from triticale straw using the ionic liquid and sulfate methods. Energies12(6), 1155.

    Google Scholar 

  30. Liu, X., Liu, Y., Jiang, Z., Liu, H., Yang, S., & Yan, Q. (2018). Biochemical characterization of a novel xylanase from Paenibacillus barengoltzii and its application in xylooligosaccharides production from corncobs. Food Chemistry, 264, 310–318.

    Article  CAS  Google Scholar 

  31. Oliva, J. M., Negro, M. J., Manzanares, P., Ballesteros, I., Chamorro, M. Á., Sáez, F., Ballesteros, M., & Moreno, A. D. (2017). A sequential steam explosion and reactive extrusion pretreatment for lignocellulosic biomass conversion within a fermentation-based biorefinery perspective. Fermentation, 3(2), 15.

    Article  Google Scholar 

  32. da Costa Sousa, L., Chundawat, S. P., Balan, V., & Dale, B. E. (2009). ‘Cradle-to-grave’assessment of existing lignocellulose pretreatment technologies. Current Opinion in Biotechnology20(3), 339–347.

    Google Scholar 

  33. Zhao, C., Ding, W., Chen, F., Cheng, C., & Shao, Q. (2014). Effects of compositional changes of AFEX-treated and H-AFEX-treated corn stover on enzymatic digestibility. Bioresource Technology, 155, 34–40.

    Article  CAS  Google Scholar 

  34. Biswas, R., Uellendahl, H., & Ahring, B. K. (2015). Wet explosion: A universal and efficient pretreatment process for lignocellulosic biorefineries. BioEnergy Research, 8(3), 1101–1116.

    Article  CAS  Google Scholar 

  35. Gurgel, L. V. A., Pimenta, M. T. B., & da Silva Curvelo, A. A. (2016). Ethanol–water organosolv delignification of liquid hot water (LHW) pretreated sugarcane bagasse enhanced by high–pressure carbon dioxide (HP–CO2). Industrial crops and products94, 942–950.

    Google Scholar 

  36. Patel, A., Patel, H., Divecha, J., & Shah, A. R. (2019). Enhanced production of ethanol from enzymatic hydrolysate of microwave-treated wheat straw by statistical optimization and mass balance analysis of bioconversion process. Biofuels.

    Google Scholar 

  37. Hoyer, K., Galbe, M., & Zacchi, G. (2013). The effect of prehydrolysis and improved mixing on high-solids batch simultaneous saccharification and fermentation of spruce to ethanol. Process Biochemistry, 48(2), 289–293.

    Article  CAS  Google Scholar 

  38. López-Linares, J. C., Romero, I., Cara, C., Castro, E., & Mussatto, S. I. (2018). Xylitol production by Debaryomyces hansenii and Candida guilliermondii from rapeseed straw hemicellulosic hydrolysate. Bioresource Technology, 247, 736–743.

    Article  Google Scholar 

  39. Chen, H., & Fu, X. (2016). Industrial technologies for bioethanol production from lignocellulosic biomass. Renewable and Sustainable Energy Reviews, 57, 468–478.

    Article  CAS  Google Scholar 

  40. Toor, M., Kumar, S. S., Malyan, S. K., Bishnoi, N. R., Mathimani, T., Rajendran, K., & Pugazhendhi, A. (2020). An overview on bioethanol production from lignocellulosic feedstocks. Chemosphere, 242, 125080.

    Article  CAS  Google Scholar 

  41. Lynd, L. R., Van Zyl, W. H., McBride, J. E., & Laser, M. (2005). Consolidated bioprocessing of cellulosic biomass: An update. Current Opinion in Biotechnology, 16(5), 577–583.

    Article  CAS  Google Scholar 

  42. Liu, Y. J., Li, B., Feng, Y., & Cui, Q. (2020). Consolidated bio-saccharification: Leading lignocellulose bioconversion into the real world. Biotechnology Advances, 40, 107535.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neeraj K. Aggarwal .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aggarwal, N.K., Kumar, N., Mittal, M. (2022). Integrated Biorefinery and Bioethanol Production. In: Bioethanol Production. Green Chemistry and Sustainable Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-05091-6_8

Download citation

Publish with us

Policies and ethics