Skip to main content

Potential of Weed Biomass for Bioethanol Production

  • Chapter
  • First Online:
Bioethanol Production

Abstract

Bioethanol can be considered as future fuel which has the potential to replace fossil fuels. Weeds have become difficult to manage to stop their global spread. Weeds can be profitable and valuable when utilized as a potential resource. Next-generation biofuel feedstocks can be made from weeds because of their rapid reproduction, abundance of cellulose, and low lignin content. Pretreatment of lignocellulosic materials is one of the most important aspects of a cost-effective bioethanol production process. This chapter provides an overview of weed biomass, several pretreatment methods for LCB, and the fermentation process for producing bioethanol from lignocellulosic weed. The current chapter discusses bioethanol production from weed biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Priya, H. R., Pavithra, A. H., & Divya, J. (2014). Prospects and problems of utilization of weed biomass: a review. Research & Reviews: Journal of Agriculture and Allied Sciences, 3(2).

    Google Scholar 

  2. Banka, A., Komolwanich, T., & Wongkasemjit, S. (2015). Potential Thai grasses for bioethanol production. Cellulose, 22(1), 9–29.

    Article  CAS  Google Scholar 

  3. Kumar, P., Barrett, D. M., Delwiche, M. J., & Stroeve, P. (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial & Engineering Chemistry Research, 48(8), 3713–3729.

    Article  CAS  Google Scholar 

  4. Mood, S. H., Golfeshan, A. H., Tabatabaei, M., Jouzani, G. S., Najafi, G. H., Gholami, M., & Ardjmand, M. (2013). Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renewable and Sustainable Energy Reviews, 27, 77–93.

    Article  Google Scholar 

  5. Sun, Y., & Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresource Technology, 83(1), 1–11.

    Article  CAS  Google Scholar 

  6. Taherzadeh, M. J., & Karimi, K. (2008). Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review. International Journal of Molecular Sciences, 9(9), 1621–1651.

    Article  CAS  Google Scholar 

  7. Bensah, E. C., & Mensah, M. (2013). Chemical pretreatment methods for the production of cellulosic ethanol: technologies and innovations. International Journal of Chemical Engineering, 2013.

    Google Scholar 

  8. Carvalheiro, F., Duarte, L. C., Gírio, F. M. (2008). Hemicellulose biorefineries: A review on biomass pretreatments.

    Google Scholar 

  9. Sánchez, C. (2009). Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnology Advances, 27(2), 185–194.

    Article  Google Scholar 

  10. Ray, M. J., Leak, D. J., Spanu, P. D., & Murphy, R. J. (2010). Brown rot fungal early stage decay mechanism as a biological pretreatment for softwood biomass in biofuel production. Biomass and Bioenergy, 34(8), 1257–1262.

    Article  CAS  Google Scholar 

  11. de Carvalho, D. M., Sevastyanova, O., Penna, L. S., da Silva, B. P., Lindström, M. E., & Colodette, J. L. (2015). Assessment of chemical transformations in eucalyptus, sugarcane bagasse and straw during hydrothermal, dilute acid, and alkaline pretreatments. Industrial Crops and Products, 73, 118–126.

    Article  Google Scholar 

  12. Sarkar, N., Ghosh, S. K., Bannerjee, S., & Aikat, K. (2012). Bioethanol production from agricultural wastes: An overview. Renewable Energy, 37(1), 19–27.

    Article  CAS  Google Scholar 

  13. Conde-Mejia, C., Jimenez-Gutierrez, A., & El-Halwagi, M. (2012). A comparison of pretreatment methods for bioethanol production from lignocellulosic materials. Process Safety and Environmental Protection, 90(3), 189–202.

    Article  CAS  Google Scholar 

  14. Jeffries, T. W. (2006). Engineering yeasts for xylose metabolism. Current Opinion in Biotechnology, 17(3), 320–326.

    Article  CAS  Google Scholar 

  15. Hahn-Hägerdal, B., Karhumaa, K., Jeppsson, M., & Gorwa-Grauslund, M. F., (2007). Metabolic engineering for pentose utilization in Saccharomyces cerevisiae. Biofuels, 147–177.

    Google Scholar 

  16. Wongwatanapaiboon, J., Kangvansaichol, K., Burapatana, V., Inochanon, R., Winayanuwattikun, P., Yongvanich, T., & Chulalaksananukul, W. (2012). The potential of cellulosic ethanol production from grasses in Thailand. Journal of Biomedicine and Biotechnology, 2012.

    Google Scholar 

  17. Kuhad, R. C., Gupta, R., Khasa, Y. P., & Singh, A. (2010). Bioethanol production from Lantana camara (red sage): Pretreatment, saccharification and fermentation. Bioresource Technology, 101(21), 8348–8354.

    Article  CAS  Google Scholar 

  18. Satyanagalakshmi, K., Sindhu, R., Binod, P., Janu, K. U., Sukumaran, R. K., & Pandey, A. (2011). Bioethanol production from acid pretreated water hyacinth by separate hydrolysis and fermentation.

    Google Scholar 

  19. Prasertwasu, S., Khumsupan, D., Komolwanich, T., Chaisuwan, T., Luengnaruemitchai, A., & Wongkasemjit, S. (2014). Efficient process for ethanol production from Thai Mission grass (Pennisetum polystachion). Bioresource Technology, 163, 152–159.

    Article  CAS  Google Scholar 

  20. Mishima, D., Kuniki, M., Sei, K., Soda, S., Ike, M., & Fujita, M. (2008). Ethanol production from candidate energy crops: water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes L.). Bioresource Technology, 99(7), 2495–2500.

    Google Scholar 

  21. Singh, S., Agarwal, M., Sarma, S., Goyal, A., & Moholkar, V. S. (2015). Mechanistic insight into ultrasound induced enhancement of simultaneous saccharification and fermentation of Parthenium hysterophorus for ethanol production. Ultrasonics Sonochemistry, 26, 249–256.

    Article  CAS  Google Scholar 

  22. Ratsamee, S., Akaracharanya, A., Leepipatpiboon, N., Srinorakutara, T., Kitpreechavanich, V., & Tolieng, V. (2012). Purple guinea grass: Pretreatment and ethanol fermentation. BioResources, 7(2), 1891–1906.

    Article  Google Scholar 

  23. Chandel, A. K., Singh, O. V., Rao, L. V., Chandrasekhar, G., & Narasu, M. L. (2011). Bioconversion of novel substrate Saccharum spontaneum, a weedy material, into ethanol by Pichia stipitis NCIM3498. Bioresource Technology, 102(2), 1709–1714.

    Article  CAS  Google Scholar 

  24. Aswathy, U. S., Sukumaran, R. K., Devi, G. L., Rajasree, K. P., Singhania, R. R., & Pandey, A. (2010). Bio-ethanol from water hyacinth biomass: An evaluation of enzymatic saccharification strategy. Bioresource Technology, 101(3), 925–930.

    Article  CAS  Google Scholar 

  25. Magdum, S., More, S., & Nadaf, A. (2012). Biochemical conversion of acid-pretreated water hyacinth (Eichhornia Crassipes) to alcohol using Pichia Stipitis NCIM3497. International Journal of advanced biotechnology and research, 3(2), 585–590.

    CAS  Google Scholar 

  26. Gusain, R., & Suthar, S. (2017). Potential of aquatic weeds (Lemna gibba, Lemna minor, Pistia stratiotes and Eichhornia sp.) in biofuel production. Process Safety and Environmental Protection, 109, 233–241.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neeraj K. Aggarwal .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aggarwal, N.K., Kumar, N., Mittal, M. (2022). Potential of Weed Biomass for Bioethanol Production. In: Bioethanol Production. Green Chemistry and Sustainable Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-05091-6_5

Download citation

Publish with us

Policies and ethics