Skip to main content

Understanding of Different Processing Technologies for Bioethanol Production

  • Chapter
  • First Online:
Bioethanol Production

Abstract

Bioethanol has the potential to address the energy crisis by replacing fossil fuels. The need for energy is increasing day by day as a result of the rising population and industrialization. Simultaneously, global bioethanol production is steadily increasing. Bioethanol production's environmental consequences are entirely reliant on substrate accessibility and conversion technology. Pretreatment, enzymatic hydrolysis, sugar fermentation, and distillation are four steps that go into making bioethanol from agro-residues. Several hurdles and limits face these operations, including biomass transport and handling, as well as an effective pretreatment technique for separating lignin from lignocellulosic biomass residues. This chapter examines the present status of different bioethanol production technologies such as Separate Hydrolysis and Fermentation, Simultaneous Saccharification and Fermentation, Simultaneous Saccharification and Co-fermentation, and Consolidated Bioprocessing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. India. (2011). Biomass for sustainable development-lessons for decentralized energy delivery village energy security programme. Document of the World Bank. http://www.mnre.gov.in/pdf/VESP-Final-Report-July%202011.pdf

  2. Su, T., Zhao, D., Khodadadi, M., & Len, C. (2020). Lignocellulosic biomass for bioethanol: Recent advances, technology trends, and barriers to industrial development. Current Opinion in Green and Sustainable Chemistry, 24, 56–60.

    Article  Google Scholar 

  3. EUBIA. 2020. Bioethanol; European Biomass Industry Association: Brussels, Belgium, 2020; Available online: https://www.eubia.org/ cms/wiki-biomass/biofuels/bioethanol

  4. Keshav, P. K., Shaik, N., Koti, S., & Linga, V. R. (2016). Bioconversion of alkali delignified cotton stalk using two-stage dilute acid hydrolysis and fermentation of detoxified hydrolysate into ethanol. Industrial Crops and Products, 91, 323–331.

    Article  CAS  Google Scholar 

  5. Demirbaş, A. (2005). Bioethanol from cellulosic materials: a renewable motor fuel from biomass. Energy Sources27(4), 327–337.

    Google Scholar 

  6. Isikgor, F. H., & Becer, C. R. (2015). Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polymer Chemistry, 6(25), 4497–4559.

    Article  CAS  Google Scholar 

  7. Gismatulina, Y. A., Budaeva, V. V., & Sakovich, G. V. (2018). Nitrocellulose synthesis from miscanthus cellulose. Propellants, Explosives, Pyrotechnics, 43(1), 96–100.

    Article  CAS  Google Scholar 

  8. Reddy, K. O., Maheswari, C. U., Dhlamini, M. S., Mothudi, B. M., Kommula, V. P., Zhang, J., Zhang, J., & Rajulu, A. V. (2018). Extraction and characterization of cellulose single fibers from native african napier grass. Carbohydrate Polymers, 188, 85–91.

    Article  CAS  PubMed  Google Scholar 

  9. Sannigrahi, P., Ragauskas, A. J., & Tuskan, G. A. (2010). Poplar as a feedstock for biofuels: A review of compositional characteristics. Biofuels, Bioproducts and Biorefining, 4(2), 209–226.

    Article  CAS  Google Scholar 

  10. Li, X., Sun, C., Zhou, B., & He, Y. (2015). Determination of hemicellulose, cellulose and lignin in moso bamboo by near infrared spectroscopy. Scientific Reports, 5(1), 1–11.

    Article  Google Scholar 

  11. Saliu, B. K., & Sani, A. (2012). Bioethanol potentials of corn cob hydrolysed using cellulases of Aspergillus niger and Penicillium decumbens. Excli Journal, 11, 468.

    PubMed  PubMed Central  Google Scholar 

  12. Wan, C., & Li, Y. (2010). Microbial pretreatment of corn stover with Ceriporiopsis subvermispora for enzymatic hydrolysis and ethanol production. Bioresource Technology, 101(16), 6398–6403.

    Article  CAS  PubMed  Google Scholar 

  13. Lu, P., & Hsieh, Y. L. (2012). Preparation and characterization of cellulose nanocrystals from rice straw. Carbohydrate Polymers, 87(1), 564–573.

    Article  CAS  PubMed  Google Scholar 

  14. Duque, A., Doménech, P., Álvarez, C., Ballesteros, M., & Manzanares, P. (2020). Study of the bioprocess conditions to produce bioethanol from barley straw pretreated by combined soda and enzyme-catalyzed extrusion. Renewable Energy, 158, 263–270.

    Article  CAS  Google Scholar 

  15. Huber, G. W., Iborra, S., & Corma, A. (2006). Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chemical Reviews, 106(9), 4044–4098.

    Article  CAS  PubMed  Google Scholar 

  16. Vohra, M., Manwar, J., Manmode, R., Padgilwar, S., & Patil, S. (2014). Bioethanol production: Feedstock and current technologies. Journal of Environmental Chemical Engineering, 2(1), 573–584.

    Article  CAS  Google Scholar 

  17. Li, Y. H., Zhang, X. Y., Zhang, F., Peng, L. C., Zhang, D. B., Kondo, A., Bai, F. W., & Zhao, X. Q. (2018). Optimization of cellulolytic enzyme components through engineering Trichoderma reesei and on-site fermentation using the soluble inducer for cellulosic ethanol production from corn stover. Biotechnology for Biofuels, 11(1), 1–14.

    Article  Google Scholar 

  18. Chirapart, A., Praiboon, J., Puangsombat, P., Pattanapon, C., & Nunraksa, N. (2014). Chemical composition and ethanol production potential of Thai seaweed species. Journal of Applied Phycology, 26(2), 979–986.

    Article  CAS  Google Scholar 

  19. Gauss, W. F., Suzuki, S., Takagi, M., & Bio Research Center Co Ltd. (1976). Manufacture of alcohol from cellulosic materials using plural ferments. U.S. Patent 3,990,944.

    Google Scholar 

  20. Olofsson, K., Bertilsson, M., & Lidén, G. (2008). A short review on SSF—An interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnology for Biofuels, 1(1), 1–14.

    Article  Google Scholar 

  21. Öhgren, K., Bura, R., Lesnicki, G., Saddler, J., & Zacchi, G. (2007). A comparison between simultaneous saccharification and fermentation and separate hydrolysis and fermentation using steam-pretreated corn stover. Process Biochemistry, 42(5), 834–839.

    Article  Google Scholar 

  22. Cardona, C. A., & Sánchez, Ó. J. (2007). Fuel ethanol production: Process design trends and integration opportunities. Bioresource Technology, 98(12), 2415–2457.

    Article  CAS  PubMed  Google Scholar 

  23. Sanchez, O. J., & Cardona, C. A. (2008). Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresource Technology, 99(13), 5270–5295.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang, M., Wang, F., Su, R., Qi, W., & He, Z. (2010). Ethanol production from high dry matter corncob using fed-batch simultaneous saccharification and fermentation after combined pretreatment. Bioresource Technology, 101(13), 4959–4964.

    Article  CAS  PubMed  Google Scholar 

  25. Öhgren, K., Bengtsson, O., Gorwa-Grauslund, M. F., Galbe, M., Hahn-Hägerdal, B., & Zacchi, G. (2006). Simultaneous saccharification and co-fermentation of glucose and xylose in steam-pretreated corn stover at high fiber content with Saccharomyces cerevisiae TMB3400. Journal of biotechnology, 126(4), 488–498.

    Article  PubMed  Google Scholar 

  26. Zuroff, T. R., Xiques, S. B., & Curtis, W. R. (2013). Consortia-mediated bioprocessing of cellulose to ethanol with a symbiotic Clostridium phytofermentans/yeast co-culture. Biotechnology for Biofuels, 6(1), 1–12.

    Article  Google Scholar 

  27. Nagarajan, D., Lee, D. J., & Chang, J. S. (2019). Recent insights into consolidated bioprocessing for lignocellulosic biohydrogen production. International Journal of Hydrogen Energy, 44(28), 14362–14379.

    Article  CAS  Google Scholar 

  28. Fan, Z. (2014). Consolidated bioprocessing for ethanol production. In Biorefineries (pp. 141–160). Elsevier.

    Google Scholar 

  29. Ábrego, U., Chen, Z., & Wan, C. (2017). Consolidated bioprocessing systems for cellulosic biofuel production. Advances in Bioenergy, 2, 143–182.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neeraj K. Aggarwal .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aggarwal, N.K., Kumar, N., Mittal, M. (2022). Understanding of Different Processing Technologies for Bioethanol Production. In: Bioethanol Production. Green Chemistry and Sustainable Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-05091-6_2

Download citation

Publish with us

Policies and ethics