Skip to main content

Life Cycle Analysis (LCA) in GHG Emission and Techno-economic Analysis (TEA) of Bioethanol Production

  • Chapter
  • First Online:
Bioethanol Production

Abstract

The exhaustion of fossil resources and poor conditions of the environment are two of the world’s primary worries these days. Fossil fuels, like coal, oil, and natural gas, are being exploited at a rising rate in both developed and developing countries, resulting in their overall depletion. There is an urgent need to produce sustainable and green technologies. Bioethanol, liquid renewable biofuel is an ideal option to opt. Production at economical price keeping in view all the factors is very important. To assist the commercialization of enhanced ethanol production, each case should undergo a techno-economic analysis (TEA). Life cycle assessment is a strong technique for identifying and assessing environmental consequences, energy usage, and financial feasibility of alternative lignocellulosic ethanol pathways, as well as identifying sites for future revolution. Techno-economic analysis and Life cycle assessment provide a thorough foundation for decision-making. This chapter aims at concept of TEA and LCA of bioethanol production from different feedstocks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Falkner, R. (2016). The Paris Agreement and the new logic of international climate politics. International Affairs, 92(5), 1107–1125.

    Article  Google Scholar 

  2. Ritchie, H., & Roser, M. (2020). CO2 and greenhouse gas emissions. Our world in data.

    Google Scholar 

  3. Duque, A., Álvarez, C., Doménech, P., Manzanares, P., & Moreno, A. D. (2021). Advanced bioethanol production: From novel raw materials to integrated biorefineries. Processes, 9(2), 206.

    Article  CAS  Google Scholar 

  4. Fulton, L. M., Lynd, L. R., Körner, A., Greene, N., & Tonachel, L. R. (2015). The need for biofuels as part of a low carbon energy future. Biofuels, Bioproducts and Biorefining, 9(5), 476–483.

    Article  CAS  Google Scholar 

  5. Zhang, J., Fisher, T. S., Ramachandran, P. V., Gore, J. P., & Mudawar, I. (2005). A review of heat transfer issues in hydrogen storage technologies.

    Google Scholar 

  6. Felderhoff, M., Weidenthaler, C., von Helmolt, R., & Eberle, U. (2007). Hydrogen storage: The remaining scientific and technological challenges. Physical Chemistry Chemical Physics, 9(21), 2643–2653.

    Article  CAS  PubMed  Google Scholar 

  7. Den Boer, E., Aarnink, S., Kleiner, F., & Pagenkopf, J. (2013). Zero emissions trucks. An overview of state-of-the-art technologies and their potential.

    Google Scholar 

  8. Metz, B., Davidson, O., De Coninck, H. C., Loos, M., & Meyer, L. (2005). IPCC special report on carbon dioxide capture and storage. Cambridge University Press.

    Google Scholar 

  9. Kim, J. H., Lee, J. C., & Pak, D. (2011). Feasibility of producing ethanol from food waste. Waste Management, 31(9–10), 2121–2125.

    Article  CAS  PubMed  Google Scholar 

  10. Zaky, A. S., Carter, C. E., Meng, F., & French, C. E. (2021). A preliminary life cycle analysis of bioethanol production using seawater in a coastal biorefinery setting. Processes, 9(8), 1399.

    Article  CAS  Google Scholar 

  11. Neupane, B., Halog, A., & Dhungel, S. (2011). Attributional life cycle assessment of woodchips for bioethanol production. Journal of Cleaner Production, 19(6–7), 733–741.

    Article  CAS  Google Scholar 

  12. Amidon, T. E., Wood, C. D., Shupe, A. M., Wang, Y., Graves, M., & Liu, S. (2008). Biorefinery: Conversion of woody biomass to chemicals, energy and materials. Journal of Biobased Materials and Bioenergy, 2(2), 100–120.

    Article  Google Scholar 

  13. Amidon, T. E., Bujanovic, B., Liu, S., & Howard, J. R. (2011). Commercializing biorefinery technology: A case for the multi-product pathway to a viable biorefinery. Forests, 2(4), 929–947.

    Article  Google Scholar 

  14. Amidon, T. E., & Liu, S. (2009). Water-based woody biorefinery. Biotechnology Advances, 27(5), 542–550.

    Article  CAS  PubMed  Google Scholar 

  15. Therasme, O., Volk, T. A., Cabrera, A. M., Eisenbies, M. H., & Amidon, T. E. (2018). Hot water extraction improves the characteristics of willow and sugar maple biomass with different amount of bark. Frontiers in Energy Research, 93.

    Google Scholar 

  16. Wood, C. D., Amidon, T. E., Volk, T. A., & Emerson, R. M. (2020). Hot water extraction: Short rotation willow, mixed hardwoods, and process considerations. Energies, 13(8), 2071.

    Article  CAS  Google Scholar 

  17. Runge, T., Wipperfurth, P., & Zhang, C. (2013). Improving biomass combustion quality using a liquid hot water treatment. Biofuels, 4(1), 73–83.

    Article  CAS  Google Scholar 

  18. Volk, T. A., Berguson, B., Daly, C., Halbleib, M. D., Miller, R., Rials, T. G., Abrahamson, L. P., Buchman, D., Buford, M., Cunningham, M. W., & Eisenbies, M. (2018). Poplar and shrub willow energy crops in the United States: Field trial results from the multiyear regional feedstock partnership and yield potential maps based on the PRISM-ELM model. Gcb Bioenergy, 10(10), 735–751.

    Article  Google Scholar 

  19. Zalesny, R. S., Jr., Berndes, G., Dimitriou, I., Fritsche, U., Miller, C., Eisenbies, M., Ghezehei, S., Hazel, D., Headlee, W. L., Mola-Yudego, B., & Negri, M. C. (2019). Positive water linkages of producing short rotation poplars and willows for bioenergy and phytotechnologies. Wiley Interdisciplinary Reviews: Energy and Environment, 8(5), e345.

    Google Scholar 

  20. González-García, S., Iribarren, D., Susmozas, A., Dufour, J., & Murphy, R. J. (2012). Life cycle assessment of two alternative bioenergy systems involving Salix spp. biomass: Bioethanol production and power generation. Applied Energy95, 111–122.

    Google Scholar 

  21. González-García, S., Mola-Yudego, B., & Murphy, R. J. (2013). Life cycle assessment of potential energy uses for short rotation willow biomass in Sweden. The International Journal of Life Cycle Assessment18(4), 783–795.

    Google Scholar 

  22. Budsberg, E., Rastogi, M., Puettmann, M. E., Caputo, J., Balogh, S., Volk, T. A., Gustafson, R., & Johnson, L. (2012). Life-cycle assessment for the production of bioethanol from willow biomass crops via biochemical conversion. Forest Products Journal, 62(4), 305–313.

    Article  CAS  Google Scholar 

  23. Stephenson, A. L., Dupree, P., Scott, S. A., & Dennis, J. S. (2010). The environmental and economic sustainability of potential bioethanol from willow in the UK. Bioresource technology, 101(24), 9612–9623.

    Article  CAS  PubMed  Google Scholar 

  24. Gilani, B., & Stuart, P. R. (2015). Life cycle assessment of an integrated forest biorefinery: Hot water extraction process case study. Biofuels, Bioproducts and Biorefining, 9(6), 677–695.

    Article  CAS  Google Scholar 

  25. Nayak, A., & Bhushan, B. (2019). An overview of the recent trends on the waste valorization techniques for food wastes. Journal of environmental management, 233, 352–370.

    Article  CAS  PubMed  Google Scholar 

  26. Papadaskalopoulou, C., Sotiropoulos, A., Novacovic, J., Barabouti, E., Mai, S., Malamis, D., Kekos, D., & Loizidou, M. (2019). Comparative life cycle assessment of a waste to ethanol biorefinery system versus conventional waste management methods. Resources, Conservation and Recycling, 149, 130–139.

    Article  Google Scholar 

  27. Meng, F., & McKechnie, J. (2019). Challenges in quantifying greenhouse gas impacts of waste-based biofuels in EU and US biofuel policies: Case study of butanol and ethanol production from municipal solid waste. Environmental Science & Technology, 53(20), 12141–12149.

    Article  CAS  Google Scholar 

  28. González-García, S., Morales, P. C., & Gullón, B. (2018). Estimating the environmental impacts of a brewery waste–based biorefinery: Bio-ethanol and xylooligosaccharides joint production case study. Industrial Crops and Products123, 331–340.

    Google Scholar 

  29. Guerrero, A. B., & Muñoz, E. (2018). Life cycle assessment of second generation ethanol derived from banana agricultural waste: Environmental impacts and energy balance. Journal of Cleaner Production, 174, 710–717.

    Article  CAS  Google Scholar 

  30. Gnansounou, E., Vaskan, P., & Pachón, E. R. (2015). Comparative techno-economic assessment and LCA of selected integrated sugarcane-based biorefineries. Bioresource Technology, 196, 364–375.

    Article  CAS  PubMed  Google Scholar 

  31. Bozorgirad, M. A., Zhang, H., Haapala, K. R., & Murthy, G. S. (2013). Environmental impact and cost assessment of incineration and ethanol production as municipal solid waste management strategies. The International Journal of Life Cycle Assessment, 18(8), 1502–1512.

    Article  CAS  Google Scholar 

  32. Ebner, J., Babbitt, C., Winer, M., Hilton, B., & Williamson, A. (2014). Life cycle greenhouse gas (GHG) impacts of a novel process for converting food waste to ethanol and co-products. Applied Energy, 130, 86–93.

    Article  CAS  Google Scholar 

  33. Velásquez-Arredondo, H. I., & Ruiz-Colorado, A. A. (2010). Ethanol production process from banana fruit and its lignocellulosic residues: energy analysis. Energy35(7), 3081–3087.

    Google Scholar 

  34. Prasoulas, G., Gentikis, A., Konti, A., Kalantzi, S., Kekos, D., & Mamma, D. (2020). Bioethanol production from food waste applying the multienzyme system produced on-site by Fusarium oxysporum F3 and mixed microbial cultures. Fermentation, 6(2), 39.

    Article  CAS  Google Scholar 

  35. Matsakas, L., & Christakopoulos, P. (2015). Ethanol production from enzymatically treated dried food waste using enzymes produced on-site. Sustainability, 7(2), 1446–1458.

    Article  Google Scholar 

  36. Mohd Yusof, S. J. H., Roslan, A. M., Ibrahim, K. N., Syed Abdullah, S. S., Zakaria, M. R., Hassan, M. A., & Shirai, Y. (2019). Life cycle assessment for bioethanol production from oil palm frond juice in an oil palm based biorefinery. Sustainability, 11(24), 6928.

    Google Scholar 

  37. Nielsen, P. H., Oxenbøll, K. M., & Wenzel, H. (2007). Cradle-to-gate environmental assessment of enzyme products produced industrially in Denmark by Novozymes A/S. The International Journal of Life Cycle Assessment, 12(6), 432–438.

    Article  CAS  Google Scholar 

  38. Gilpin, G. S., & Andrae, A. S. (2017). Comparative attributional life cycle assessment of European cellulase enzyme production for use in second-generation lignocellulosic bioethanol production. The International Journal of Life Cycle Assessment, 22(7), 1034–1053.

    Article  CAS  Google Scholar 

  39. Dunn, J. B., Mueller, S., Wang, M., & Han, J. (2012). Energy consumption and greenhouse gas emissions from enzyme and yeast manufacture for corn and cellulosic ethanol production. Biotechnology Letters, 34(12), 2259–2263.

    Article  CAS  PubMed  Google Scholar 

  40. Knauf, M., & Kraus, K. (2006). Specific yeasts developed for modern ethanol production. Sugar Industry/Zuckerindustrie, 131(11), 753–758.

    CAS  Google Scholar 

  41. Matsakas, L., Kekos, D., Loizidou, M., & Christakopoulos, P. (2014). Utilization of household food waste for the production of ethanol at high dry material content. Biotechnology for Biofuels, 7(1), 1–9.

    Article  CAS  Google Scholar 

  42. Kiran, E. U., & Liu, Y. (2015). Bioethanol production from mixed food waste by an effective enzymatic pretreatment. Fuel, 159, 463–469.

    Article  CAS  Google Scholar 

  43. Padella, M., O’Connell, A., & Prussi, M. (2019). What is still limiting the deployment of cellulosic ethanol? Analysis of the current status of the sector. Applied Sciences, 9(21), 4523.

    Article  CAS  Google Scholar 

  44. Aditiya, H. B., Mahlia, T. M. I., Chong, W. T., Nur, H., & Sebayang, A. H. (2016). Second generation bioethanol production: A critical review. Renewable and Sustainable Energy Reviews, 66, 631–653.

    Article  CAS  Google Scholar 

  45. Koppram, R., Tomás-Pejó, E., Xiros, C., & Olsson, L. (2014). Lignocellulosic ethanol production at high-gravity: challenges and perspectives. Trends in biotechnology32(1), 46–53.

    Google Scholar 

  46. Galbe, M., Sassner, P., Wingren, A., & Zacchi, G. (2007). Process engineering economics of bioethanol production. Biofuels, 303–327.

    Google Scholar 

  47. Modenbach, A. A., & Nokes, S. E. (2013). Enzymatic hydrolysis of biomass at high-solids loadings–a review. Biomass and Bioenergy, 56, 526–544.

    Article  CAS  Google Scholar 

  48. Hoyer, K., Galbe, M., & Zacchi, G. (2013). The effect of prehydrolysis and improved mixing on high-solids batch simultaneous saccharification and fermentation of spruce to ethanol. Process Biochemistry, 48(2), 289–293.

    Article  CAS  Google Scholar 

  49. Brown, T. R., Wright, M. M., Román-Leshkov, Y., & Brown, R. C. (2014). Techno-economic assessment (TEA) of advanced biochemical and thermochemical biorefineries. In Advances in biorefineries (pp. 34–66). Woodhead Publishing.

    Google Scholar 

  50. Roy, P. (2014). Life cycle assessment of ethanol produced from lignocellulosic biomass: Techno-economic and environmental evaluation (Doctoral dissertation, University of Guelph).

    Google Scholar 

  51. Galbe, M., & Zacchi, G. (2007). Pretreatment of lignocellulosic materials for efficient bioethanol production. Biofuels, 41–65.

    Google Scholar 

  52. Dao, C. N., Mupondwa, E., Tabil, L., Li, X., & Castellanos, E. C. (2018). A review on techno-economic analysis and life-cycle assessment of second generation bioethanol production via biochemical processes.

    Google Scholar 

  53. Conde-Mejia, C., Jimenez-Gutierrez, A., & El-Halwagi, M. (2012). A comparison of pretreatment methods for bioethanol production from lignocellulosic materials. Process Safety and Environmental Protection90(3), 189–202.

    Google Scholar 

  54. Petersen, A. M., Van der Westhuizen, W. A., Mandegari, M. A., & Görgens, J. F. (2018). Economic analysis of bioethanol and electricity production from sugarcane in South Africa. Biofuels, Bioproducts and Biorefining, 12(2), 224–238.

    Article  CAS  Google Scholar 

  55. Mupondwa, E., Li, X., & Tabil, L. (2017). Large-scale commercial production of cellulosic ethanol from agricultural residues: A case study of wheat straw in the Canadian Prairies. Biofuels, Bioproducts and Biorefining, 11(6), 955–970.

    Article  CAS  Google Scholar 

  56. Vaskan, P., Pachón, E. R., & Gnansounou, E. (2018). Techno-economic and life-cycle assessments of biorefineries based on palm empty fruit bunches in Brazil. Journal of Cleaner Production, 172, 3655–3668.

    Article  CAS  Google Scholar 

  57. Dempfle, D., Kröcher, O., & Studer, M. H. P. (2021). Techno-economic assessment of bioethanol production from lignocellulose by consortium-based consolidated bioprocessing at industrial scale. New Biotechnology, 65, 53–60.

    Article  CAS  PubMed  Google Scholar 

  58. Sondhi, S., Kaur, P. S., & Kaur, M. (2020). Techno-economic analysis of bioethanol production from microwave pretreated kitchen waste. SN Applied Sciences, 2(9), 1–13.

    Article  CAS  Google Scholar 

  59. Frankó, B., Galbe, M., & Wallberg, O. (2016). Bioethanol production from forestry residues: A comparative techno-economic analysis. Applied energy, 184, 727–736.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neeraj K. Aggarwal .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aggarwal, N.K., Kumar, N., Mittal, M. (2022). Life Cycle Analysis (LCA) in GHG Emission and Techno-economic Analysis (TEA) of Bioethanol Production. In: Bioethanol Production. Green Chemistry and Sustainable Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-05091-6_14

Download citation

Publish with us

Policies and ethics