Skip to main content

MXene: Pioneering 2D Materials

  • Chapter
  • First Online:
Fundamental Aspects and Perspectives of MXenes

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Two-dimensional (2D) nanomaterials such as graphene and chalcogenides have been appealing candidates for their desired applications owing to their demonstrated intriguing properties. Besides these 2D materials, discovering new types of 2D materials such as MXene aids in broadening the flatland research. MXenes with general formula Mn+1XnTx are a relatively new class of emerging materials discovered a decade back (since 2011) and are 2D transitional carbides, nitrides, and carbonitrides based materials. From its discovery, MXene becomes popular owing to its unique physicochemical properties and diverse chemistries. Several different types of MXenes and their combinations with other materials have been discovered using computational and experimental methods. Due to their compositional versatility, 2D gallery spaces, ordered structures, controlled surface chemistry, etc. these materials (MXene and its composition) are found to be suitable materials for various applications, including but not limited to energy storage, catalysis, optoelectronics, smart textiles, antennas, and electromagnetic interference shielding. In this chapter, a brief introduction to the evolution of MXene and a glimpse into its field of applications have been emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jiang, J., Zou, Y., Arramel, Li, F., Wang, J., Zou, J., Li, N.: Intercalation engineering of MXenes towards highly efficient photo(electrocatalytic) hydrogen evolution reactions. J. Mater. Chem. A 9, 24195–24214 (2021)

    Google Scholar 

  2. Barsoum, M.W.: MAX Phases: Properties of Machinable Ternary Carbides and Nitrides. Wiley, Weinheim (2013)

    Google Scholar 

  3. Fu, L., Xia, W.: MAX phases as nanolaminate materials: chemical composition, microstructure, synthesis, properties, and applications. Adv. Eng. Mater. 23, 2001191 (2021)

    Article  CAS  Google Scholar 

  4. Bhat, A., Anwer, S., Bhat, K.S., Mohideen, M.I.H., Liao, K., Qurashi, A.: Prospects challenges and stability of 2D MXenes for clean energy conversion and storage applications, Npj 2D Mater. Appl. 5, 61 (2021)

    CAS  Google Scholar 

  5. Gogotsi, Y., Anasori, B.: The rise of MXenes. ACS Nano 13, 8491–8494 (2019)

    Article  CAS  Google Scholar 

  6. Anasori, B., Lukatskaya, M.R., Gogotsi, Y.: 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017)

    Article  CAS  Google Scholar 

  7. Jiang, X., Kuklin, A.V., Baev, A., Ge, Y., Ågren, H., Zhang, H., Prasad, P.N.: Two-dimensional MXenes: from morphological to optical, electric, and magnetic properties and applications. Phys. Rep. 848, 1–58 (2020)

    Article  CAS  Google Scholar 

  8. Hadler-Jacobsen, J., Fagerli, F.H., Kaland, H., Schnell, S.K.: Stacking sequence, interlayer bonding, termination group stability and Li/Na/Mg diffusion in MXenes. ACS Mater. Lett. 3, 1369–1376 (2021)

    Article  CAS  Google Scholar 

  9. Meshkian, R., Näslund, L.-Å., Halim, J., Lu, J., Barsoum, M.W., Rosen, J.: Synthesis of two-dimensional molybdenum carbide, Mo2C, from the gallium based atomic laminate Mo2Ga2C. Scr. Mater. 108, 147–150 (2015)

    Article  CAS  Google Scholar 

  10. Zhan, C., Sun, W., Kent, P.R.C., Naguib, M., Gogotsi, Y., Jiang, D.: Computational screening of MXene electrodes for pseudocapacitive energy storage. J. Phys. Chem. C. 123, 315–321 (2019)

    Article  CAS  Google Scholar 

  11. Duong, D.L., Yun, S.J., Lee, Y.H., van der Waals: Layered materials: opportunities and challenges. ACS Nano. 11, 11803–11830 (2017)

    Google Scholar 

  12. Magnuson, M., Mattesini, M.: Chemical bonding and electronic-structure in MAX phases as viewed by X-ray spectroscopy and density functional theory. Thin Solid Films 621, 108–130 (2017)

    Article  CAS  Google Scholar 

  13. Li, X., Ran, F., Yang, F., Long, J., Shao, L.: Advances in MXene films: synthesis, assembly, and applications. Trans. Tianjin Univ. 27, 217–247 (2021)

    Article  CAS  Google Scholar 

  14. Zhao, X., Radovic, M., Green, M.J.: Synthesizing MXene nanosheets by water-free etching. Chem. 6, 544–546 (2020)

    Article  CAS  Google Scholar 

  15. Sun, W., Shah, S.A., Chen, Y., Tan, Z., Gao, H., Habib, T., Radovic, M., Green, M.J.: Electrochemical etching of Ti2AlC to Ti2CT (MXene) in low-concentration hydrochloric acid solution. J. Mater. Chem. A 5, 21663–21668 (2017)

    Article  CAS  Google Scholar 

  16. Natu, V., Pai, R., Sokol, M., Carey, M., Kalra, V., Barsoum, M.W.: 2D Ti3C2Tz MXene synthesized by water-free etching of Ti3AlC2 in Polar organic solvents. Chem 6, 616–630 (2020)

    Article  CAS  Google Scholar 

  17. Abdolhosseinzadeh, S., Jiang, X., Zhang, H., Qiu, J., Zhang, C.(J.).: Perspectives on solution processing of two-dimensional MXenes. Mater. Today 48, 214–240 (2021)

    Google Scholar 

  18. Natu, V., Sokol, M., Verger, L., Barsoum, M.W.: Effect of edge charges on stability and aggregation of Ti3C2Tz MXene colloidal suspensions. J. Phys. Chem. C 122, 27745–27753 (2018)

    Article  CAS  Google Scholar 

  19. Wang, X., Ong, G.M.C., Naguib, M., Wu, J.: Theoretical insights into MXene termination and surface charge regulation. J. Phys. Chem. C. 125, 21771–21779 (2021)

    Article  CAS  Google Scholar 

  20. Champagne, A., Charlier, J.-C.: Physical properties of 2D MXenes: from a theoretical perspective. J. Phys. Mater. 3, 032006 (2020)

    Article  CAS  Google Scholar 

  21. Hart, J.L., Hantanasirisakul, K., Lang, A.C., Anasori, B., Pinto, D., Pivak, Y., van Omme, J.T., May, S.J., Gogotsi, Y., Taheri, M.L.: Control of MXenes’ electronic properties through termination and intercalation. Nat. Commun. 10, 522 (2019)

    Article  CAS  Google Scholar 

  22. Qiao, C., Wu, H., Xu, X., Guan, Z., Ou‐Yang, W.: Electrical conductivity enhancement and electronic applications of 2D Ti3C2Tx MXene materials. Adv. Mater. Interf. 2100903 (2021)

    Google Scholar 

  23. Lipatov, A., Lu, H., Alhabeb, M., Anasori, B., Gruverman, A., Gogotsi, Y., Sinitskii, A.: Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers. Sci. Adv. 4 (2018)

    Google Scholar 

  24. Fu, B., Sun, J., Wang, C., Shang, C., Xu, L., Li, J., Zhang, H.: MXenes: synthesis, optical properties, and applications in ultrafast photonics. Small 17, 2006054 (2021)

    Article  CAS  Google Scholar 

  25. Jeon, J., Yang, Y., Choi, H., Park, J.-H., Lee, B.H., Lee, S.: MXenes for future nanophotonic device applications. Nanophotonics 9, 1831–1853 (2020)

    Article  CAS  Google Scholar 

  26. Das, P., Wu, Z.-S.: MXene for energy storage: present status and future perspectives. J. Phys. Energy 2, 032004 (2020)

    Article  CAS  Google Scholar 

  27. Hong, W., Wyatt, B.C., Nemani, S.K., Anasori, B.: Double transition-metal MXenes: atomistic design of two-dimensional carbides and nitrides. MRS Bull. 45, 850–861 (2020)

    Article  CAS  Google Scholar 

  28. Dahlqvist, M., Rosen, J.: Order and disorder in quaternary atomic laminates from first-principles calculations. Phys. Chem. Chem. Phys. 17, 31810–31821 (2015)

    Article  CAS  Google Scholar 

  29. Mozafari, M., Soroush, M.: Surface functionalization of MXenes. Mater. Adv. 2, 7277–7307 (2021)

    Article  CAS  Google Scholar 

  30. Frisenda, R., Niu, Y., Gant, P., Muñoz, M., Castellanos-Gomez, A.: Naturally occurring van der Waals materials. Npj 2D Mater Appl. 4, 38 (2020)

    Article  Google Scholar 

  31. Di Bartolomeo, A.: Emerging 2D materials and their Van Der Waals heterostructures. Nanomaterials 10, 579 (2020)

    Article  CAS  Google Scholar 

  32. Verger, L., Xu, C., Natu, V., Cheng, H.-M., Ren, W., Barsoum, M.W.: Overview of the synthesis of MXenes and other ultrathin 2D transition metal carbides and nitrides. Curr. Opin. Solid State Mater. Sci. 23, 149–163 (2019)

    Article  CAS  Google Scholar 

  33. Iqbal, A., Hong, J., Ko, T.Y., Koo, C.M.: Improving oxidation stability of 2D MXenes: synthesis, storage media, and conditions. Nano Converg. 8, 9 (2021)

    Article  CAS  Google Scholar 

  34. Luo, J., Matios, E., Wang, H., Tao, X., Li, W.: Interfacial structure design of MXene-based nanomaterials for electrochemical energy storage and conversion. InfoMat 2, 1057–1076 (2020)

    Article  CAS  Google Scholar 

  35. Naguib, M., Barsoum, M.W., Gogotsi, Y.: Ten years of progress in the synthesis and development of MXenes. Adv. Mater. 33, 2103393 (2021)

    Article  CAS  Google Scholar 

  36. Wang, H., Zhang, J., Wu, Y., Huang, H., Li, G., Zhang, X., Wang, Z.: Surface modified MXene Ti3C2 multilayers by aryl diazonium salts leading to large-scale delamination. Appl. Surf. Sci. 384, 287–293 (2016)

    Article  CAS  Google Scholar 

  37. Persson, I., Halim, J., Hansen, T.W., Wagner, J.B., Darakchieva, V., Palisaitis, J., Rosen, J., Persson, P.O.Å.: How much oxygen can a mxene surface take before it Breaks? Adv. Funct. Mater. 30, 1909005 (2020)

    Article  CAS  Google Scholar 

  38. Persson, I., Näslund, L.-Å., Halim, J., Barsoum, M.W., Darakchieva, V., Palisaitis, J., Rosen, J., Persson, P.O.Å.: On the organization and thermal behavior of functional groups on Ti3C2 MXene surfaces in vacuum. 2D Mater. 5, 015002 (2017)

    Google Scholar 

  39. Li, X., Wang, C., Cao, Y., Wang, G.: Functional MXene materials: progress of their applications. Chem. Asian J. 13, 2742–2757 (2018)

    Article  CAS  Google Scholar 

  40. Idumah, C.I., Obele, C.M., Enwerem, U.E.: On interfacial and surface behavior of polymeric MXenes nanoarchitectures and applications. Curr. Res. Green Sustain. Chem. 4, 100104 (2021)

    Article  Google Scholar 

  41. Khaledialidusti, R., Khazaei, M., Khazaei, S., Ohno, K.: High-throughput computational discovery of ternary-layered MAX phases and prediction of their exfoliation for formation of 2D MXenes. Nanoscale 13, 7294–7307 (2021)

    Article  CAS  Google Scholar 

  42. Simon, P.: Two-dimensional MXene with controlled interlayer spacing for electrochemical energy storage. ACS Nano 11, 2393–2396 (2017)

    Article  CAS  Google Scholar 

  43. Naguib, M., Mochalin, V.N., Barsoum, M.W., Gogotsi, Y.: 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv. Mater. 26, 992–1005 (2014)

    Article  CAS  Google Scholar 

  44. Naguib, M., Kurtoglu, M., Presser, V., Lu, J., Niu, J., Heon, M., Hultman, L., Gogotsi, Y., Barsoum, M.W.: Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011)

    Article  CAS  Google Scholar 

  45. VahidMohammadi, A., Rosen, J., Gogotsi, Y.: The world of two-dimensional carbides and nitrides (MXenes). Science (80–), 372 (2021)

    Google Scholar 

  46. Li, J., Yuan, X., Lin, C., Yang, Y., Xu, L., Du, X., Xie, J., Lin, J., Sun, J.: Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification. Adv. Energy Mater. 7, 1602725 (2017)

    Article  CAS  Google Scholar 

  47. Kajiyama, S., Szabova, L., Sodeyama, K., Iinuma, H., Morita, R., Gotoh, K., Tateyama, Y., Okubo, M., Yamada, A.: Sodium-ion intercalation mechanism in MXene nanosheets. ACS Nano 10, 3334–3341 (2016)

    Article  CAS  Google Scholar 

  48. Yu, Y.-X.: Prediction of mobility, enhanced storage capacity, and volume change during sodiation on interlayer-expanded functionalized Ti3C2 MXene anode materials for sodium-ion batteries. J. Phys. Chem. C 120, 5288–5296 (2016)

    Article  CAS  Google Scholar 

  49. Ghidiu, M., Halim, J., Kota, S., Bish, D., Gogotsi, Y., Barsoum, M.W.: Ion-exchange and cation solvation reactions in Ti3C2 MXene. Chem. Mater. 28, 3507–3514 (2016)

    Article  CAS  Google Scholar 

  50. Xie, Y., Naguib, M., Mochalin, V.N., Barsoum, M.W., Gogotsi, Y., Yu, X., Nam, K.-W., Yang, X.-Q., Kolesnikov, A.I., Kent, P.R.C.: Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. J. Am. Chem. Soc. 136, 6385–6394 (2014)

    Article  CAS  Google Scholar 

  51. Srivastava, N.K., Majumder, C.B.: Novel biofiltration methods for the treatment of heavy metals from industrial wastewater. J. Hazard. Mater. 151, 1–8 (2008)

    Article  CAS  Google Scholar 

  52. Ihsanullah, Abbas, A., Al-Amer, A.M., Laoui, T., Al-Marri, M.J., Nasser, M.S., Khraisheh, M., Atieh, M.A.: Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications. Sep. Purif. Technol. 157, 141–161 (2016)

    Google Scholar 

  53. Fard, A.K., Mckay, G., Chamoun, R., Rhadfi, T., Preud’Homme, H., Atieh, M.A.: Barium removal from synthetic natural and produced water using MXene as two dimensional (2-D) nanosheet adsorbent. Chem. Eng. J. 317, 331–342 (2017)

    Google Scholar 

  54. Kim, S., Gholamirad, F., Yu, M., Park, C.M., Jang, A., Jang, M., Taheri-Qazvini, N., Yoon, Y.: Enhanced adsorption performance for selected pharmaceutical compounds by sonicated Ti3C2TX MXene. Chem. Eng. J. 406, 126789 (2021)

    Article  CAS  Google Scholar 

  55. Vidyasagar, D., Gupta, A., Balapure, A., Ghugal, S.G., Shende, A.G., Umare, S.S.: 2D/2D Wg-C3N4/g-C3N4 composite as “Adsorb and Shuttle” model photocatalyst for pollution mitigation. J. Photochem. Photobiol. A Chem. 370, 117–126 (2019)

    Article  CAS  Google Scholar 

  56. Wei, Z., Peigen, Z., Wubian, T., Xia, Q., Yamei, Z., ZhengMing, S.: Alkali treated Ti3C2Tx MXenes and their dye adsorption performance. Mater. Chem. Phys. 206, 270–276 (2018)

    Article  CAS  Google Scholar 

  57. Kang, K.M., Kim, D.W., Ren, C.E., Cho, K.M., Kim, S.J., Choi, J.H., Nam, Y.T., Gogotsi, Y., Jung, H.-T.: Selective Molecular Separation on Ti3C2Tx–graphene oxide membranes during pressure-driven filtration: comparison with graphene oxide and MXenes. ACS Appl. Mater. Interf. 9, 44687–44694 (2017)

    Article  CAS  Google Scholar 

  58. Han, M., Yin, X., Wu, H., Hou, Z., Song, C., Li, X., Zhang, L., Cheng, L.: Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band. ACS Appl. Mater. Interf. 8, 21011–21019 (2016)

    Article  CAS  Google Scholar 

  59. Shahzad, F., Alhabeb, M., Hatter, C.B., Anasori, B., Man Hong, S., Koo, C.M., Gogotsi, Y.: Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science (80–), 353,1137–1140 (2016)

    Google Scholar 

  60. Han, M., Shuck, C.E., Rakhmanov, R., Parchment, D., Anasori, B., Koo, C.M., Friedman, G., Gogotsi, Y.: Beyond Ti3C2Tx: MXenes for electromagnetic interference shielding. ACS Nano 14, 5008–5016 (2020)

    Article  CAS  Google Scholar 

  61. Mathis, T.S., Maleski, K., Goad, A., Sarycheva, A., Anayee, M., Foucher, A.C., Hantanasirisakul, K., Shuck, C.E., Stach, E.A., Gogotsi, Y.: Modified MAX phase synthesis for environmentally stable and highly conductive Ti3C2 MXene. ACS Nano 15, 6420–6429 (2021)

    Article  CAS  Google Scholar 

  62. Mudigonda, P., Abburi, S.K.: A survey: 5G in IoT is a boon for big data communication and its security. In: Kumar, A., Paprzycki, M., Gunjan, V. (eds.) ICDSMLA 2019. Lecture Notes in Electrical Engineering, vol. 601. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-1420-3_33

  63. Médard, M.: Is 5 just what comes after 4? Nat. Electron. 3, 2–4 (2020)

    Article  Google Scholar 

  64. Iqbal, A., Shahzad, F., Hantanasirisakul, K., Kim, M.-K., Kwon, J., Hong, J., Kim, H., Kim, D., Gogotsi, Y., Koo, C.M.: Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science (80–), 369, 446–450 (2020)

    Google Scholar 

  65. Yun, T., Kim, H., Iqbal, A., Cho, Y.S., Lee, G.S., Kim, M., Kim, S.J., Kim, D., Gogotsi, Y., Kim, S.O., Koo, C.M.: Electromagnetic shielding of monolayer MXene assemblies. Adv. Mater. 32, 1906769 (2020)

    Article  CAS  Google Scholar 

  66. Kumar, P., Yu, S., Shahzad, F., Hong, S.M., Kim, Y.-H., Koo, C.M.: Ultrahigh electrically and thermally conductive self-aligned graphene/polymer composites using large-area reduced graphene oxides. Carbon N.Y. 101, 120–128 (2016)

    Article  CAS  Google Scholar 

  67. Kumar, P., Shahzad, F., Yu, S., Hong, S.M., Kim, Y.-H., Koo, C.M.: Large-area reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness. Carbon N.Y. 94, 494–500 (2015)

    Article  CAS  Google Scholar 

  68. Zeng, Z., Wang, C., Siqueira, G., Han, D., Huch, A., Abdolhosseinzadeh, S., Heier, J., Nüesch, F., Zhang, C.(J.), Nyström, G.: Nanocellulose‐MXene biomimetic aerogels with orientation‐tunable electromagnetic interference shielding performance. Adv. Sci. 7, 2000979 (2020)

    Google Scholar 

  69. Xu, B., Gogotsi, Y.: MXenes–the fastest growing materials family in the two-dimensional world. Chin. Chem. Lett. 31, 919–921 (2020)

    Article  CAS  Google Scholar 

  70. Iqbal, A., Kwon, J., Kim, M.-K., Koo, C.M.: MXenes for electromagnetic interference shielding: experimental and theoretical perspectives. Mater. Today Adv. 9, 100124 (2021)

    Article  CAS  Google Scholar 

  71. Xu, H., Yin, X., Li, X., Li, M., Liang, S., Zhang, L., Cheng, L.: Lightweight Ti2CTx MXene/Poly(vinyl alcohol) composite foams for electromagnetic wave shielding with absorption-dominated feature. ACS Appl. Mater. Interf. 11, 10198–10207 (2019)

    Article  CAS  Google Scholar 

  72. Gogotsi, Y., Huang, Q.: MXenes: two-dimensional building blocks for future materials and devices. ACS Nano 15, 5775–5780 (2021)

    Article  CAS  Google Scholar 

  73. Khazaei, M., Mishra, A., Venkataramanan, N.S., Singh, A.K., Yunoki, S.: Recent advances in MXenes: from fundamentals to applications. Curr. Opin. Solid State Mater. Sci. 23, 164–178 (2019)

    Article  CAS  Google Scholar 

  74. Wei, Y., Zhang, P., Soomro, R.A., Zhu, Q., Xu, B.: Advances in the synthesis of 2D MXenes. Adv. Mater. 33, 2103148 (2021)

    Article  CAS  Google Scholar 

  75. Shuck, C.E., Ventura-Martinez, K., Goad, A., Uzun, S., Shekhirev, M., Gogotsi, Y.: Safe synthesis of MAX and MXene: guidelines to reduce risk during synthesis. ACS Chem. Heal. Saf. 28, 326–338 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors (AA and RVM) duly acknowledge FONDECYT Postdoctoral project (No.: 3200076), the Government of Chile, and the University of Concepcion, Concepcion, Chile, for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Mangalaraja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arulraj, A., Mangalaraja, R.V., Khalid, M. (2022). MXene: Pioneering 2D Materials. In: Khalid, M., Grace, A.N., Arulraj, A., Numan, A. (eds) Fundamental Aspects and Perspectives of MXenes. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-05006-0_1

Download citation

Publish with us

Policies and ethics