Abstract
Two-dimensional (2D) nanomaterials such as graphene and chalcogenides have been appealing candidates for their desired applications owing to their demonstrated intriguing properties. Besides these 2D materials, discovering new types of 2D materials such as MXene aids in broadening the flatland research. MXenes with general formula Mn+1XnTx are a relatively new class of emerging materials discovered a decade back (since 2011) and are 2D transitional carbides, nitrides, and carbonitrides based materials. From its discovery, MXene becomes popular owing to its unique physicochemical properties and diverse chemistries. Several different types of MXenes and their combinations with other materials have been discovered using computational and experimental methods. Due to their compositional versatility, 2D gallery spaces, ordered structures, controlled surface chemistry, etc. these materials (MXene and its composition) are found to be suitable materials for various applications, including but not limited to energy storage, catalysis, optoelectronics, smart textiles, antennas, and electromagnetic interference shielding. In this chapter, a brief introduction to the evolution of MXene and a glimpse into its field of applications have been emphasized.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Jiang, J., Zou, Y., Arramel, Li, F., Wang, J., Zou, J., Li, N.: Intercalation engineering of MXenes towards highly efficient photo(electrocatalytic) hydrogen evolution reactions. J. Mater. Chem. A 9, 24195–24214 (2021)
Barsoum, M.W.: MAX Phases: Properties of Machinable Ternary Carbides and Nitrides. Wiley, Weinheim (2013)
Fu, L., Xia, W.: MAX phases as nanolaminate materials: chemical composition, microstructure, synthesis, properties, and applications. Adv. Eng. Mater. 23, 2001191 (2021)
Bhat, A., Anwer, S., Bhat, K.S., Mohideen, M.I.H., Liao, K., Qurashi, A.: Prospects challenges and stability of 2D MXenes for clean energy conversion and storage applications, Npj 2D Mater. Appl. 5, 61 (2021)
Gogotsi, Y., Anasori, B.: The rise of MXenes. ACS Nano 13, 8491–8494 (2019)
Anasori, B., Lukatskaya, M.R., Gogotsi, Y.: 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017)
Jiang, X., Kuklin, A.V., Baev, A., Ge, Y., Ågren, H., Zhang, H., Prasad, P.N.: Two-dimensional MXenes: from morphological to optical, electric, and magnetic properties and applications. Phys. Rep. 848, 1–58 (2020)
Hadler-Jacobsen, J., Fagerli, F.H., Kaland, H., Schnell, S.K.: Stacking sequence, interlayer bonding, termination group stability and Li/Na/Mg diffusion in MXenes. ACS Mater. Lett. 3, 1369–1376 (2021)
Meshkian, R., Näslund, L.-Å., Halim, J., Lu, J., Barsoum, M.W., Rosen, J.: Synthesis of two-dimensional molybdenum carbide, Mo2C, from the gallium based atomic laminate Mo2Ga2C. Scr. Mater. 108, 147–150 (2015)
Zhan, C., Sun, W., Kent, P.R.C., Naguib, M., Gogotsi, Y., Jiang, D.: Computational screening of MXene electrodes for pseudocapacitive energy storage. J. Phys. Chem. C. 123, 315–321 (2019)
Duong, D.L., Yun, S.J., Lee, Y.H., van der Waals: Layered materials: opportunities and challenges. ACS Nano. 11, 11803–11830 (2017)
Magnuson, M., Mattesini, M.: Chemical bonding and electronic-structure in MAX phases as viewed by X-ray spectroscopy and density functional theory. Thin Solid Films 621, 108–130 (2017)
Li, X., Ran, F., Yang, F., Long, J., Shao, L.: Advances in MXene films: synthesis, assembly, and applications. Trans. Tianjin Univ. 27, 217–247 (2021)
Zhao, X., Radovic, M., Green, M.J.: Synthesizing MXene nanosheets by water-free etching. Chem. 6, 544–546 (2020)
Sun, W., Shah, S.A., Chen, Y., Tan, Z., Gao, H., Habib, T., Radovic, M., Green, M.J.: Electrochemical etching of Ti2AlC to Ti2CT (MXene) in low-concentration hydrochloric acid solution. J. Mater. Chem. A 5, 21663–21668 (2017)
Natu, V., Pai, R., Sokol, M., Carey, M., Kalra, V., Barsoum, M.W.: 2D Ti3C2Tz MXene synthesized by water-free etching of Ti3AlC2 in Polar organic solvents. Chem 6, 616–630 (2020)
Abdolhosseinzadeh, S., Jiang, X., Zhang, H., Qiu, J., Zhang, C.(J.).: Perspectives on solution processing of two-dimensional MXenes. Mater. Today 48, 214–240 (2021)
Natu, V., Sokol, M., Verger, L., Barsoum, M.W.: Effect of edge charges on stability and aggregation of Ti3C2Tz MXene colloidal suspensions. J. Phys. Chem. C 122, 27745–27753 (2018)
Wang, X., Ong, G.M.C., Naguib, M., Wu, J.: Theoretical insights into MXene termination and surface charge regulation. J. Phys. Chem. C. 125, 21771–21779 (2021)
Champagne, A., Charlier, J.-C.: Physical properties of 2D MXenes: from a theoretical perspective. J. Phys. Mater. 3, 032006 (2020)
Hart, J.L., Hantanasirisakul, K., Lang, A.C., Anasori, B., Pinto, D., Pivak, Y., van Omme, J.T., May, S.J., Gogotsi, Y., Taheri, M.L.: Control of MXenes’ electronic properties through termination and intercalation. Nat. Commun. 10, 522 (2019)
Qiao, C., Wu, H., Xu, X., Guan, Z., Ou‐Yang, W.: Electrical conductivity enhancement and electronic applications of 2D Ti3C2Tx MXene materials. Adv. Mater. Interf. 2100903 (2021)
Lipatov, A., Lu, H., Alhabeb, M., Anasori, B., Gruverman, A., Gogotsi, Y., Sinitskii, A.: Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers. Sci. Adv. 4 (2018)
Fu, B., Sun, J., Wang, C., Shang, C., Xu, L., Li, J., Zhang, H.: MXenes: synthesis, optical properties, and applications in ultrafast photonics. Small 17, 2006054 (2021)
Jeon, J., Yang, Y., Choi, H., Park, J.-H., Lee, B.H., Lee, S.: MXenes for future nanophotonic device applications. Nanophotonics 9, 1831–1853 (2020)
Das, P., Wu, Z.-S.: MXene for energy storage: present status and future perspectives. J. Phys. Energy 2, 032004 (2020)
Hong, W., Wyatt, B.C., Nemani, S.K., Anasori, B.: Double transition-metal MXenes: atomistic design of two-dimensional carbides and nitrides. MRS Bull. 45, 850–861 (2020)
Dahlqvist, M., Rosen, J.: Order and disorder in quaternary atomic laminates from first-principles calculations. Phys. Chem. Chem. Phys. 17, 31810–31821 (2015)
Mozafari, M., Soroush, M.: Surface functionalization of MXenes. Mater. Adv. 2, 7277–7307 (2021)
Frisenda, R., Niu, Y., Gant, P., Muñoz, M., Castellanos-Gomez, A.: Naturally occurring van der Waals materials. Npj 2D Mater Appl. 4, 38 (2020)
Di Bartolomeo, A.: Emerging 2D materials and their Van Der Waals heterostructures. Nanomaterials 10, 579 (2020)
Verger, L., Xu, C., Natu, V., Cheng, H.-M., Ren, W., Barsoum, M.W.: Overview of the synthesis of MXenes and other ultrathin 2D transition metal carbides and nitrides. Curr. Opin. Solid State Mater. Sci. 23, 149–163 (2019)
Iqbal, A., Hong, J., Ko, T.Y., Koo, C.M.: Improving oxidation stability of 2D MXenes: synthesis, storage media, and conditions. Nano Converg. 8, 9 (2021)
Luo, J., Matios, E., Wang, H., Tao, X., Li, W.: Interfacial structure design of MXene-based nanomaterials for electrochemical energy storage and conversion. InfoMat 2, 1057–1076 (2020)
Naguib, M., Barsoum, M.W., Gogotsi, Y.: Ten years of progress in the synthesis and development of MXenes. Adv. Mater. 33, 2103393 (2021)
Wang, H., Zhang, J., Wu, Y., Huang, H., Li, G., Zhang, X., Wang, Z.: Surface modified MXene Ti3C2 multilayers by aryl diazonium salts leading to large-scale delamination. Appl. Surf. Sci. 384, 287–293 (2016)
Persson, I., Halim, J., Hansen, T.W., Wagner, J.B., Darakchieva, V., Palisaitis, J., Rosen, J., Persson, P.O.Å.: How much oxygen can a mxene surface take before it Breaks? Adv. Funct. Mater. 30, 1909005 (2020)
Persson, I., Näslund, L.-Å., Halim, J., Barsoum, M.W., Darakchieva, V., Palisaitis, J., Rosen, J., Persson, P.O.Å.: On the organization and thermal behavior of functional groups on Ti3C2 MXene surfaces in vacuum. 2D Mater. 5, 015002 (2017)
Li, X., Wang, C., Cao, Y., Wang, G.: Functional MXene materials: progress of their applications. Chem. Asian J. 13, 2742–2757 (2018)
Idumah, C.I., Obele, C.M., Enwerem, U.E.: On interfacial and surface behavior of polymeric MXenes nanoarchitectures and applications. Curr. Res. Green Sustain. Chem. 4, 100104 (2021)
Khaledialidusti, R., Khazaei, M., Khazaei, S., Ohno, K.: High-throughput computational discovery of ternary-layered MAX phases and prediction of their exfoliation for formation of 2D MXenes. Nanoscale 13, 7294–7307 (2021)
Simon, P.: Two-dimensional MXene with controlled interlayer spacing for electrochemical energy storage. ACS Nano 11, 2393–2396 (2017)
Naguib, M., Mochalin, V.N., Barsoum, M.W., Gogotsi, Y.: 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv. Mater. 26, 992–1005 (2014)
Naguib, M., Kurtoglu, M., Presser, V., Lu, J., Niu, J., Heon, M., Hultman, L., Gogotsi, Y., Barsoum, M.W.: Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011)
VahidMohammadi, A., Rosen, J., Gogotsi, Y.: The world of two-dimensional carbides and nitrides (MXenes). Science (80–), 372 (2021)
Li, J., Yuan, X., Lin, C., Yang, Y., Xu, L., Du, X., Xie, J., Lin, J., Sun, J.: Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification. Adv. Energy Mater. 7, 1602725 (2017)
Kajiyama, S., Szabova, L., Sodeyama, K., Iinuma, H., Morita, R., Gotoh, K., Tateyama, Y., Okubo, M., Yamada, A.: Sodium-ion intercalation mechanism in MXene nanosheets. ACS Nano 10, 3334–3341 (2016)
Yu, Y.-X.: Prediction of mobility, enhanced storage capacity, and volume change during sodiation on interlayer-expanded functionalized Ti3C2 MXene anode materials for sodium-ion batteries. J. Phys. Chem. C 120, 5288–5296 (2016)
Ghidiu, M., Halim, J., Kota, S., Bish, D., Gogotsi, Y., Barsoum, M.W.: Ion-exchange and cation solvation reactions in Ti3C2 MXene. Chem. Mater. 28, 3507–3514 (2016)
Xie, Y., Naguib, M., Mochalin, V.N., Barsoum, M.W., Gogotsi, Y., Yu, X., Nam, K.-W., Yang, X.-Q., Kolesnikov, A.I., Kent, P.R.C.: Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. J. Am. Chem. Soc. 136, 6385–6394 (2014)
Srivastava, N.K., Majumder, C.B.: Novel biofiltration methods for the treatment of heavy metals from industrial wastewater. J. Hazard. Mater. 151, 1–8 (2008)
Ihsanullah, Abbas, A., Al-Amer, A.M., Laoui, T., Al-Marri, M.J., Nasser, M.S., Khraisheh, M., Atieh, M.A.: Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications. Sep. Purif. Technol. 157, 141–161 (2016)
Fard, A.K., Mckay, G., Chamoun, R., Rhadfi, T., Preud’Homme, H., Atieh, M.A.: Barium removal from synthetic natural and produced water using MXene as two dimensional (2-D) nanosheet adsorbent. Chem. Eng. J. 317, 331–342 (2017)
Kim, S., Gholamirad, F., Yu, M., Park, C.M., Jang, A., Jang, M., Taheri-Qazvini, N., Yoon, Y.: Enhanced adsorption performance for selected pharmaceutical compounds by sonicated Ti3C2TX MXene. Chem. Eng. J. 406, 126789 (2021)
Vidyasagar, D., Gupta, A., Balapure, A., Ghugal, S.G., Shende, A.G., Umare, S.S.: 2D/2D Wg-C3N4/g-C3N4 composite as “Adsorb and Shuttle” model photocatalyst for pollution mitigation. J. Photochem. Photobiol. A Chem. 370, 117–126 (2019)
Wei, Z., Peigen, Z., Wubian, T., Xia, Q., Yamei, Z., ZhengMing, S.: Alkali treated Ti3C2Tx MXenes and their dye adsorption performance. Mater. Chem. Phys. 206, 270–276 (2018)
Kang, K.M., Kim, D.W., Ren, C.E., Cho, K.M., Kim, S.J., Choi, J.H., Nam, Y.T., Gogotsi, Y., Jung, H.-T.: Selective Molecular Separation on Ti3C2Tx–graphene oxide membranes during pressure-driven filtration: comparison with graphene oxide and MXenes. ACS Appl. Mater. Interf. 9, 44687–44694 (2017)
Han, M., Yin, X., Wu, H., Hou, Z., Song, C., Li, X., Zhang, L., Cheng, L.: Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band. ACS Appl. Mater. Interf. 8, 21011–21019 (2016)
Shahzad, F., Alhabeb, M., Hatter, C.B., Anasori, B., Man Hong, S., Koo, C.M., Gogotsi, Y.: Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science (80–), 353,1137–1140 (2016)
Han, M., Shuck, C.E., Rakhmanov, R., Parchment, D., Anasori, B., Koo, C.M., Friedman, G., Gogotsi, Y.: Beyond Ti3C2Tx: MXenes for electromagnetic interference shielding. ACS Nano 14, 5008–5016 (2020)
Mathis, T.S., Maleski, K., Goad, A., Sarycheva, A., Anayee, M., Foucher, A.C., Hantanasirisakul, K., Shuck, C.E., Stach, E.A., Gogotsi, Y.: Modified MAX phase synthesis for environmentally stable and highly conductive Ti3C2 MXene. ACS Nano 15, 6420–6429 (2021)
Mudigonda, P., Abburi, S.K.: A survey: 5G in IoT is a boon for big data communication and its security. In: Kumar, A., Paprzycki, M., Gunjan, V. (eds.) ICDSMLA 2019. Lecture Notes in Electrical Engineering, vol. 601. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-1420-3_33
Médard, M.: Is 5 just what comes after 4? Nat. Electron. 3, 2–4 (2020)
Iqbal, A., Shahzad, F., Hantanasirisakul, K., Kim, M.-K., Kwon, J., Hong, J., Kim, H., Kim, D., Gogotsi, Y., Koo, C.M.: Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science (80–), 369, 446–450 (2020)
Yun, T., Kim, H., Iqbal, A., Cho, Y.S., Lee, G.S., Kim, M., Kim, S.J., Kim, D., Gogotsi, Y., Kim, S.O., Koo, C.M.: Electromagnetic shielding of monolayer MXene assemblies. Adv. Mater. 32, 1906769 (2020)
Kumar, P., Yu, S., Shahzad, F., Hong, S.M., Kim, Y.-H., Koo, C.M.: Ultrahigh electrically and thermally conductive self-aligned graphene/polymer composites using large-area reduced graphene oxides. Carbon N.Y. 101, 120–128 (2016)
Kumar, P., Shahzad, F., Yu, S., Hong, S.M., Kim, Y.-H., Koo, C.M.: Large-area reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness. Carbon N.Y. 94, 494–500 (2015)
Zeng, Z., Wang, C., Siqueira, G., Han, D., Huch, A., Abdolhosseinzadeh, S., Heier, J., Nüesch, F., Zhang, C.(J.), Nyström, G.: Nanocellulose‐MXene biomimetic aerogels with orientation‐tunable electromagnetic interference shielding performance. Adv. Sci. 7, 2000979 (2020)
Xu, B., Gogotsi, Y.: MXenes–the fastest growing materials family in the two-dimensional world. Chin. Chem. Lett. 31, 919–921 (2020)
Iqbal, A., Kwon, J., Kim, M.-K., Koo, C.M.: MXenes for electromagnetic interference shielding: experimental and theoretical perspectives. Mater. Today Adv. 9, 100124 (2021)
Xu, H., Yin, X., Li, X., Li, M., Liang, S., Zhang, L., Cheng, L.: Lightweight Ti2CTx MXene/Poly(vinyl alcohol) composite foams for electromagnetic wave shielding with absorption-dominated feature. ACS Appl. Mater. Interf. 11, 10198–10207 (2019)
Gogotsi, Y., Huang, Q.: MXenes: two-dimensional building blocks for future materials and devices. ACS Nano 15, 5775–5780 (2021)
Khazaei, M., Mishra, A., Venkataramanan, N.S., Singh, A.K., Yunoki, S.: Recent advances in MXenes: from fundamentals to applications. Curr. Opin. Solid State Mater. Sci. 23, 164–178 (2019)
Wei, Y., Zhang, P., Soomro, R.A., Zhu, Q., Xu, B.: Advances in the synthesis of 2D MXenes. Adv. Mater. 33, 2103148 (2021)
Shuck, C.E., Ventura-Martinez, K., Goad, A., Uzun, S., Shekhirev, M., Gogotsi, Y.: Safe synthesis of MAX and MXene: guidelines to reduce risk during synthesis. ACS Chem. Heal. Saf. 28, 326–338 (2021)
Acknowledgements
The authors (AA and RVM) duly acknowledge FONDECYT Postdoctoral project (No.: 3200076), the Government of Chile, and the University of Concepcion, Concepcion, Chile, for the financial support.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Arulraj, A., Mangalaraja, R.V., Khalid, M. (2022). MXene: Pioneering 2D Materials. In: Khalid, M., Grace, A.N., Arulraj, A., Numan, A. (eds) Fundamental Aspects and Perspectives of MXenes. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-05006-0_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-05006-0_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-05005-3
Online ISBN: 978-3-031-05006-0
eBook Packages: Chemistry and Materials ScienceChemistry and Material Science (R0)