Skip to main content

Advancements in MXenes

  • 99 Accesses

Part of the Engineering Materials book series (ENG.MAT.)

Abstract

MXenes have gained an excessive interest in architecting new-generation wearable devices owing to their unique physicochemical characteristics and machine processability. Accordingly, different strategies for scalable manufacturing of MXenes are explored for its mass-level production. Using a large reactor with optimal control of reaction parameters, the chemical etching approach has emerged as a feasible, scalable strategy to synthesize MXenes. Moreover, alternative precursors like non-MAX phases and ‘i-MAX’ phases have advanced these synthesis strategies with a new prospect of scalable production. These developments have projected MXene as a promising candidate to design next-generation wearable electronics with advanced features like intelligent operation, portable, compact, self-powered, flexible, stretchable, bendable, and skin embedded nature. Due to these features, MXenes and their hybrids with materials such as macromolecules, graphene-based materials, and metals are the current choice of advanced nanomaterials to fabricate wearable physical, chemical, and biosensors with excellent performances. These materials have consistently excellent sensing performance in all wear and tear situations and possess biomedical, agriculture, workplace safety, and environmental monitoring applications. Besides excellent electric conductivity and the prospect of accommodating skin depth factors, MXene based materials are used to design wireless communication systems supporting Bluetooth, WiFi, and 5G requirements. It anticipates the enormous potential of MXene based materials to architect field-deployable compact sensors for personalized healthcare monitoring with intelligent wireless operation.

Keywords

  • Wearable electronics
  • MXene
  • Wireless communication
  • Scalable production
  • Sensors

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-031-05006-0_12
  • Chapter length: 24 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-031-05006-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 1

Reprinted with permission of [5]. Copyright 2020, Wiley

Fig. 2

Reproduced with permission [5]. Copyright 2020, Wiley

Fig. 3

Reproduced with permission [12]. Copyright 2020, Cell Press

Fig. 4

Reproduced with permission [28]. Copyright 2019, Springer

Fig. 5

Reproduced with permission [44]. Copyright 2019, American Chemical Society

Fig. 6

Reproduced with permission [61]. Copyright 2018, American Chemical Society

Fig. 7

Reproduced with permission [65]. Copyright 2021, American Chemical Society

Fig. 8

Reproduced with permission [6]. Copyright 2021, Elsevier

Fig. 9

Reproduced with permission [84]. Copyright 2020, Wiley

References

  1. Chaudhary, V., Kaushik, A., Furukawa, H., Khosla, A.: Review—Towards 5th Generation AI and IoT Driven Sustainable Intelligent Sensors Based on 2D MXenes and Borophene. ECS Sens. Plus 1 (2022)

    Google Scholar 

  2. Naguib, M., Barsoum, M.W., Gogotsi, Y.: Ten years of progress in the synthesis and development of MXenes. Adv. Mater. 33(39) (2021)

    Google Scholar 

  3. Wei, Y., Zhang, P., Soomro, R.A., Zhu, Q., Xu, B.: Advances in the synthesis of 2D MXenes. Adv. Mater. 33 (2021)

    Google Scholar 

  4. Seth, Y., Dharaskar, X., Chaudhary, V., Khalid, M., Walvekar, R.: Prospects of titanium carbide-based MXene in heavy metal ion and radionuclide adsorption for wastewater remediation: A review. Chemosphere 293 (2022)

    Google Scholar 

  5. Shuck, C.E., Sarycheva, A., Anayee, M., Levitt, A., Zhu, Y., Uzun, S., et al.: Scalable synthesis of Ti3C2Tx MXene. Adv. Eng. Mater. 22(3) (2020)

    Google Scholar 

  6. Tang, Y., Xu, Y., Yang, J., Song, Y., Yin, F., Yuan, W.: Stretchable and wearable conductometric VOC sensors based on microstructured MXene/polyurethane core-sheath fibers. Sens. Actuators B Chem. 1, 346 (2021)

    Google Scholar 

  7. Hope, M.A., Forse, A.C., Griffith, K.J., Lukatskaya, M.R., Ghidiu, M., Gogotsi, Y., et al.: NMR reveals the surface functionalisation of Ti3C2 MXene. Phys. Chem. Chem. Phys. 18(7) (2016)

    Google Scholar 

  8. Rao, K.S.M.S.R., Joshi, J.B.: Liquid phase mixing in mechanically agitated vessels. Chem. Eng. Commun. 74(1) (1988)

    Google Scholar 

  9. Jaszczur, M., Młynarczykowska, A.: A general review of the current development of mechanically agitated vessels. Processes 8 (2020)

    Google Scholar 

  10. Gygax, R.: Chemical reaction engineering for safety. Chem. Eng. Sci. 43(8) (1988)

    Google Scholar 

  11. Zhang, S., Huang, P., Wang, J., Zhuang, Z., Zhang, Z., Han, W.Q.: Fast and universal solution-phase flocculation strategy for scalable synthesis of various few-layered MXene powders. J. Phys. Chem. Lett. 11(4) (2020)

    Google Scholar 

  12. Lipton, J., Röhr, J.A., Dang, V., Goad, A., Maleski, K., Lavini, F., et al.: Scalable, highly conductive, and micropatternable MXene films for enhanced electromagnetic interference shielding. Matter 3(2) (2020)

    Google Scholar 

  13. Zhang, C. (John), McKeon, L., Kremer, M.P., Park, S.H., Ronan, O., Seral‐Ascaso, A., et al.: Additive-free MXene inks and direct printing of micro-supercapacitors. Nat. Commun. 10(1) (2019)

    Google Scholar 

  14. Wan, S., Li, X., Chen, Y., Liu, N., Du, Y., Dou, S., et al.: High-strength scalable MXene films through bridging-induced densification. Science 374(6563) (2021)

    Google Scholar 

  15. Ding, L., Wei, Y., Wang, Y., Chen, H., Caro, J., Wang, H.: A two-dimensional lamellar membrane: MXene nanosheet stacks. Angew. Chemie Int. Ed. 56(7) (2017)

    Google Scholar 

  16. Ling, Z., Ren, C.E., Zhao, M.Q., Yang, J., Giammarco, J.M., Qiu, J., et al.: Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. USA 111(47) (2014)

    Google Scholar 

  17. Li, C., Kota, S., Hu, C., Barsoum, M.W.: On the synthesis of low-cost, titanium-based mxenes. J. Ceram Sci. Technol. 7(3) (2016)

    Google Scholar 

  18. Akuzum, B., Maleski, K., Anasori, B., Lelyukh, P., Alvarez, N.J., Kumbur, E.C., et al.: Rheological characteristics of 2D titanium carbide (MXene) dispersions: a guide for processing MXenes. ACS Nano. 12(3) (2018)

    Google Scholar 

  19. Yu, M., Feng, X.: Scalable manufacturing of MXene films: moving toward industrialization. Matter 3(2) (2020)

    Google Scholar 

  20. Liao, L., Jiang, D., Zheng, K., Zhang, M., Liu, J.: Industry-scale and environmentally stable Ti3C2Tx MXene based film for flexible energy storage devices. Adv. Funct. Mater. 31(35) (2021)

    Google Scholar 

  21. Lee, S.H., Eom, W., Shin, H., Ambade, R.B., Bang, J.H., Kim, H.W., et al.: Room-temperature, highly durable Ti3C2Tx MXene/graphene hybrid fibers for NH3 gas sensing. ACS Appl Mater Interfaces 12(9), 10434–10442 (2020)

    CAS  CrossRef  Google Scholar 

  22. Levitt, A., Seyedin, S., Zhang, J., Wang, X., Razal, J.M., Dion, G., et al.: Bath electrospinning of continuous and scalable multifunctional MXene-infiltrated nanoyarns. Small 16(26) (2020)

    Google Scholar 

  23. Zhao, M.Q., Trainor, N., Ren, C.E., Torelli, M., Anasori, B., Gogotsi, Y.: Scalable manufacturing of large and flexible sheets of MXene/graphene heterostructures. Adv. Mater. Technol. 4(5) (2019)

    Google Scholar 

  24. Wang, Y., Wang, X., Li, X., Bai, Y., Xiao, H., Liu, Y., et al.: Scalable fabrication of polyaniline nanodots decorated MXene film electrodes enabled by viscous functional inks for high-energy-density asymmetric supercapacitors. Chem. Eng. J. 405 (2021)

    Google Scholar 

  25. Wu, X., Ding, M., Xu, H., Yang, W., Zhang, K., Tian, H., et al.: Scalable Ti3C2Tx MXene interlayered forward osmosis membranes for enhanced water purification and organic solvent recovery. ACS Nano. 14(7) (2020)

    Google Scholar 

  26. Huang, J., Meng, R., Zu, L., Wang, Z., Feng, N., Yang, Z., et al.: Sandwich-like Na0.23TiO2 nanobelt/Ti3C2 MXene composites from a scalable in situ transformation reaction for long-life high-rate lithium/sodium-ion batteries. Nano Energy. 46 (2018)

    Google Scholar 

  27. Huang, H., He, J., Wang, Z., Zhang, H., Jin, L., Chen, N., et al.: Scalable, and low-cost treating-cutting-coating manufacture platform for MXene-based on-chip micro-supercapacitors. Nano Energy. 69 (2020).

    Google Scholar 

  28. Zha, X.H., Zhou, J., Eklund, P., Bai, X., Du, S., Huang, Q.: Non-MAX phase precursors for MXenes. In: 2D Metal Carbides and Nitrides (MXenes): Structure, Properties and Applications (2019)

    Google Scholar 

  29. Gao, G., , G., Li, J., Yao, K., Wu, M., Qian, M.: Monolayer MXenes: promising half-metals and spin gapless semiconductors. Nanoscale 8(16) (2016)

    Google Scholar 

  30. Zhou, J., Zha, X., Chen, F.Y., Ye, Q., Eklund, P., Du, S., et al.: A two-dimensional zirconium carbide by selective etching of Al3C3 from nanolaminated Zr3Al3C5. Angew. Chemie Int. Ed. 55(16) (2016)

    Google Scholar 

  31. Sokol, M., Natu, V., Kota, S., Barsoum, M.W.: On the chemical diversity of the MAX phases. Trends Chem 1 (2019)

    Google Scholar 

  32. Ahmed, B., El Ghazaly, A., Rosen, J.: i-MXenes for energy storage and catalysis. Adv. Funct. Mater. 30 (2020)

    Google Scholar 

  33. Thörnberg, J., Halim, J., Lu, J., , R., Palisaitis, J., Hultman, L., et al.: Synthesis of (V2/3Sc1/3)2AlC i-MAX phase and V2-xC MXene scrolls. Nanoscale 11(31) (2019)

    Google Scholar 

  34. Meshkian, R., Dahlqvist, M., Lu, J., Wickman, B., Halim, J., Thörnberg, J., et al.: W-based atomic laminates and their 2D derivative W1.33C MXene with vacancy ordering. Adv. Mater. 30(21) (2018)

    Google Scholar 

  35. Tan, P., Zou, Y., Fan, Y., Li, Z.: Self-powered wearable electronics. Wearable Technol. 1 (2020)

    Google Scholar 

  36. Gu, Y., Zhang, T., Chen, H., Wang, F., Pu, Y., Gao, C., et al.: Mini review on flexible and wearable electronics for monitoring human health information. Nanoscale Res. Lett. 14 (2019)

    Google Scholar 

  37. Neupane, G.P., Yildirim, T., Zhang, L., Lu, Y.: Emerging 2D MXene/organic heterostructures for future nanodevices. Adv. Funct. Mater. 30 (2020)

    Google Scholar 

  38. Khunger, A., Kaur, N., Mishra, Y.K., Ram Chaudhary, G., Kaushik, A.: Perspective and prospects of 2D MXenes for smart biosensing. Mater. Lett. 304 (2021)

    Google Scholar 

  39. Xin, M., Li, J., Ma, Z., Pan, L., Shi, Y.: MXenes and their applications in wearable sensors. Front. Chem. 8 (2020)

    Google Scholar 

  40. Hasan, M.M., Hossain, M.M., Chowdhury, H.K.: Two-dimensional MXene-based flexible nanostructures for functional nanodevices: a review. J. Mater. Chem A 9 (2021)

    Google Scholar 

  41. Ma, C., Ma, M.G., Si, C., Ji, X.X., Wan, P.: Flexible MXene-based composites for wearable devices. Adv. Funct. Mater. 31 (2021)

    Google Scholar 

  42. Riazi, H., Taghizadeh, G., Soroush, M.: MXene-based nanocomposite sensors. ACS Omega 6(17) (2021)

    Google Scholar 

  43. Chaudhary, V., Gautam, A., Mishra, Y.K., Kaushik, A.: Emerging MXene–polymer hybrid nanocomposites for high-performance ammonia sensing and monitoring. Nanomaterials 11(10) (2021 Sep. 24)

    Google Scholar 

  44. Shi, X., Wang, H., Xie, X., Xue, Q., Zhang, J., Kang, S., et al.: Bioinspired ultrasensitive and stretchable MXene-based strain sensor via nacre-mimetic microscale “brick-and-Mortar” architecture. ACS Nano 13(1) (2019)

    Google Scholar 

  45. Kumar, J.A., Prakash, P., Krithiga, T., Amarnath, D.J., Premkumar, J., Rajamohan, N., et al.: Methods of synthesis, characteristics, and environmental applications of MXene: a comprehensive review. Chemosphere 286 (2022)

    Google Scholar 

  46. Mehdi Aghaei, S., Aasi, A., Panchapakesan, B.: Experimental and theoretical advances in MXene-based gas sensors. ACS Omega 6 (2021)

    Google Scholar 

  47. Ho, D.H., Choi, Y.Y., Jo, S.B., Myoung, J.M., Cho, J.H.: Sensing with MXenes: progress and prospects. Adv. Mater. (2021)

    Google Scholar 

  48. Li, D., Liu, G., Zhang, Q., Qu, M., Fu, Y.Q., Liu, Q., et al.: Virtual sensor array based on MXene for selective detections of VOCs. Sens. Actuators B Chem. 331 (2021)

    Google Scholar 

  49. Du, C.F., Zhao, X., Wang, Z., Yu, H., Ye, Q.: Recent advanced on the mxene–organic hybrids: Design, synthesis, and their applications. Nanomaterials 11 (2021)

    Google Scholar 

  50. Zhang, W., Ma, C., Huang, L.Z., Guo, W.Y., Li, D.D., Bian, J., et al.: Stretchable, antifreezing, non-drying, and fast-response sensors based on cellulose nanocomposite hydrogels for signal detection. Macromol. Mater. Eng. (2021)

    Google Scholar 

  51. Ma, Z., Li, S., Wang, H., Cheng, W., Li, Y., Pan, L., et al.: Advanced electronic skin devices for healthcare applications. J. Mater. Chem. B 7 (2019)

    Google Scholar 

  52. Li, Q., Li, Y., Zeng, W.: Preparation and application of 2D MXene-based gas sensors: a review. Chemosensors 9 (2021)

    Google Scholar 

  53. Liu, M., Wang, Z., Song, P., Yang, Z., Wang, Q.: Flexible MXene/rGO/CuO hybrid aerogels for high performance acetone sensing at room temperature. Sens. Actuators B Chem. 1, 340 (2021)

    Google Scholar 

  54. Cai, Y., Shen, J., Ge, G., Zhang, Y., Jin, W., Huang, W., et al.: Stretchable Ti3C2Tx MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range. ACS Nano 12(1) (2018)

    Google Scholar 

  55. An, H., Habib, T., Shah, S., Gao, H., Radovic, M., Green, M.J., et al.: Surface-agnostic highly stretchable and bendable conductive MXene multilayers. Sci. Adv. 4(3) (2018)

    Google Scholar 

  56. Zhang, Y.Z., Lee, K.H., Anjum, D.H., Sougrat, R., Jiang, Q., Kim, H., et al.: MXenes stretch hydrogel sensor performance to new limits. Sci. Adv. 4(6) (2018)

    Google Scholar 

  57. Gasparini, A.: MXenes materials could be used in wearable pressure sensors. Scilight 2020(45) (2020)

    Google Scholar 

  58. Ma, Y., Liu, N., Li, L., Hu, X., Zou, Z., Wang, J., et al.: A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances. Nat. Commun. 8(1) (2017)

    Google Scholar 

  59. Yue, Y., Liu, N., Liu, W., Li, M., Ma, Y., Luo, C., et al.: 3D hybrid porous Mxene-sponge network and its application in piezoresistive sensor. Nano Energy 50 (2018)

    Google Scholar 

  60. Guo, Y., Zhong, M., Fang, Z., Wan, P., Yu, G.: A wearable transient pressure sensor made with MXene nanosheets for sensitive broad-range human-machine interfacing. Nano Lett. 19(2) (2019)

    Google Scholar 

  61. Ma, Y., Yue, Y., Zhang, H., Cheng, F., Zhao, W., Rao, J., et al.: 3D synergistical MXene/reduced graphene oxide aerogel for a piezoresistive sensor. ACS Nano 12(4) (2018)

    Google Scholar 

  62. Wang, K., Lou, Z., Wang, L., Zhao, L., Zhao, S., Wang, D., et al.: Bioinspired interlocked structure-induced high deformability for two-dimensional titanium carbide (MXene)/natural microcapsule-based flexible pressure sensors. ACS Nano 13(8) (2019)

    Google Scholar 

  63. Chen, X., Sun, X., Xu, W., Pan, G., Zhou, D., Zhu, J., et al.: Ratiometric photoluminescence sensing based on Ti3C2 MXene quantum dots as an intracellular pH sensor. Nanoscale 10(3) (2018)

    Google Scholar 

  64. Lei, Y., Zhao, W., Zhang, Y., Jiang, Q., He, J.H., Baeumner, A.J., et al.: A MXene-based wearable biosensor system for high-performance in vitro perspiration analysis. Small 15(19) (2019)

    Google Scholar 

  65. Yang, Y.C., Lin, Y.T., Yu, J., Chang, H.T., Lu, T.Y., Huang, T.Y., et al.: MXene nanosheet-based microneedles for monitoring muscle contraction and electrostimulation treatment. ACS Appl Nano Mater. 4(8), 7917–7924 (2021)

    CAS  CrossRef  Google Scholar 

  66. Soomro, R.A., Jawaid, S., Kalawar, N.H., Tunesi, M., Karakuş, S., Kilislioğlu, A., et al.: In-situ engineered MXene-TiO2/BiVO4 hybrid as an efficient photoelectrochemical platform for sensitive detection of soluble CD44 proteins. Biosens Bioelectron. 15, 166 (2020)

    Google Scholar 

  67. Jian, Y., Qu, D., Guo, L., Zhu, Y., Su, C., Feng, H., et al.: The prior rules of designing Ti3C2Tx MXene-based gas sensors. Front Chem. Sci. Eng. 15(3), 505–517 (2021)

    CAS  CrossRef  Google Scholar 

  68. Dhall, S., Mehta, B.R., Tyagi, A.K., Sood, K.: A review on environmental gas sensors: materials and technologies. Sens. Int. 2 (2021)

    Google Scholar 

  69. Ihsanullah, I.: Potential of MXenes in water desalination: current status and perspectives. Nano-Micro Lett. 12 (2020)

    Google Scholar 

  70. Sun, Y., Li, Y.: Potential environmental applications of MXenes: a critical review. Chemosphere 271 (2021)

    Google Scholar 

  71. Yuan, W., Yang, K., Peng, H., Li, F., Yin, F.: A flexible VOCs sensor based on a 3D Mxene framework with a high sensing performance. J. Mater. Chem. A. 6(37) (2018)

    Google Scholar 

  72. Zhao, L., Wang, K., Wei, W., Wang, L., Han, W.: High‐performance flexible sensing devices based on polyaniline/MXene nanocomposites. InfoMat. 1(3) (2019)

    Google Scholar 

  73. Li, X., Xu, J., Jiang, Y., He, Z., Liu, B., Xie, H., et al.: Toward agricultural ammonia volatilization monitoring: a flexible polyaniline/Ti3C2Tx hybrid sensitive films based gas sensor. Sens. Actuators B Chem. 316 (2020)

    Google Scholar 

  74. Jin, L., Wu, C., Wei, K., He, L., Gao, H., Zhang, H., et al.: Polymeric Ti3C2Tx MXene composites for room temperature ammonia sensing. ACS Appl. Nano Mater. 3(12) (2020)

    Google Scholar 

  75. Zhao, L., Zheng, Y., Wang, K., Lv, C., Wei, W., Wang, L., et al.: Highly stable cross-linked cationic polyacrylamide/Ti3C2Tx MXene nanocomposites for flexible ammonia-recognition devices. Adv. Mater. Technol. 5(7) (2020)

    Google Scholar 

  76. Yang, Z., Jiang, L., Wang, J., Liu, F., He, J., Liu, A., et al.: Flexible resistive NO2 gas sensor of three-dimensional crumpled MXene Ti3C2Tx/ZnO spheres for room temperature application. Sens. Actuators B Chem. 326 (2021)

    Google Scholar 

  77. Zhu, Z., Liu, C., Jiang, F., Liu, J., Ma, X., Liu, P., et al.: Flexible and lightweight Ti3C2Tx MXene@Pd colloidal nanoclusters paper film as novel H2 sensor. J Hazard Mater. 15, 399 (2020)

    Google Scholar 

  78. Zhang, D., Mi, Q., Wang, D., Li, T.: MXene/Co3O4 composite based formaldehyde sensor driven by ZnO/MXene nanowire arrays piezoelectric nanogenerator. Sens. Actuators B Chem. 15, 339 (2021)

    Google Scholar 

  79. Zhang, D., Yu, L., Wang, D., Yang, Y., Mi, Q., Zhang, J.: Multifunctional latex/polytetrafluoroethylene-based triboelectric nanogenerator for self-powered organ-like mxene/metal-organic framework-derived cuo nanohybrid ammonia sensor. ACS Nano 15(2), 2911–2919 (2021)

    CrossRef  Google Scholar 

  80. Li, X., An, Z., Lu, Y., Shan, J., Xing, H., Liu, G., et al.: Room temperature VOCs sensing with termination-modified Ti3C2Tx MXene for wearable exhaled breath monitoring. Adv. Mater. Technol. (2021)

    Google Scholar 

  81. Sarycheva, A., Polemi, A., Liu, Y., Dandekar, K., Anasori, B., Gogotsi, Y.: 2D titanium carbide (MXene) for wireless communication. Sci. Adv. 4(9) (2018)

    Google Scholar 

  82. Fu, X., Yang, H., Li, Z., Liu, N.C., Lee, P.S., Li, K., et al.: Cation-induced assembly of conductive MXene fibers for wearable heater, wireless communication, and stem cell differentiation. ACS Biomater. Sci. Eng. (2021)

    Google Scholar 

  83. Han, M., Liu, Y., Rakhmanov, R., Israel, C., Tajin, M.A.S., Friedman, G., et al.: Solution-processed Ti3C2Tx MXene antennas for radio-frequency communication. Adv. Mater. 33(1) (2021)

    Google Scholar 

  84. Li, Y., Tian, X., Gao, S.P., Jing, L., Li, K., Yang, H., et al.: Reversible crumpling of 2D titanium carbide (MXene) nanocoatings for stretchable electromagnetic shielding and wearable wireless communication. Adv. Funct. Mater. 30(5) (2020)

    Google Scholar 

  85. Rasch, F., Postica, V., Schütt, F., Mishra, Y.K., Nia, A.S., Lohe, M.R., et al.: Highly selective and ultra-low power consumption metal oxide based hydrogen gas sensor employing graphene oxide as molecular sieve. Sens. Actuators B Chem. 320 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishal Chaudhary .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Chaudhary, V., Sharma, A., Bhadola, P., Kaushik, A. (2022). Advancements in MXenes. In: Khalid, M., Grace, A.N., Arulraj, A., Numan, A. (eds) Fundamental Aspects and Perspectives of MXenes. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-05006-0_12

Download citation