Skip to main content

Exploring New Depths: How Could Passengers Interact with Future In-Car Holographic 3D Displays?

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13335))

Abstract

Holographic 3D (H3D) displays have the potential to enhance future car interiors and provide users with a new dimension of visual and interactive experience, offering a larger depth range than other state of the art 3D display technologies. In this work, a user-elicited gesture set for 3D interaction with non-driving related tasks was built and evaluated. As the H3D technology itself is still in development, mixed reality headsets (Hololens 1 and 2) were used to emulate a virtual H3D display. In a gesture-elicitation study, N = 20 participants proposed mid-air gestures for a set of 33 tasks (referents) displayed either within or outside of participants’ reach. The resulting set of most mentioned proposals was refined with a reverse-matching task, in which N = 21 participants matched referents to videos of elicited gestures. In a third evaluation step, usability and memorability characteristics of the user-elicited gesture set were compared to those of an expert-elicited alternative using a between-subjects design with N = 16 participants in each group. Results showed that while both sets can be learned and recalled comparably well, the user-elicited gesture set was associated with a higher gesture suitability and ease, a higher perceived intuitiveness and a lower perceived mental effort. Implications for future H3D in-car interfaces are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Barclay, K., Wei, D., Lutteroth, C., Sheehan, R.: A quantitative quality model for gesture based user interfaces. In: Proceedings of the 23rd Australian Computer-Human Interaction Conference, OzCHI 2011, pp. 31–39. Association for Computing Machinery, New York (2011). https://doi.org/10.1145/2071536.2071540

  2. Bengler, K.: Driver and driving experience in cars. In: Meixner, G., Müller, C. (eds.) Automotive User Interfaces. HIS, pp. 79–94. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-49448-7_3

    Chapter  Google Scholar 

  3. Blackler, A., Hurtienne, J.: Towards a unified view of intuitive interaction: definitions, models and tools across the world. MMI-Interaktiv 13, 36–54 (2007). https://eprints.qut.edu.au/19116/

  4. Borg, G.: Borg’s Perceived Exertion and Pain Scales. Human Kinetics, Champaign (1998)

    Google Scholar 

  5. Bowman, D.A., et al.: New directions in 3D user interfaces. Int. J. Virtual Real. 5(2), 3–14 (2006). https://doi.org/10.20870/IJVR.2006.5.2.2683

    Article  Google Scholar 

  6. Broy, N., Alt, F., Schneegass, S., Henze, N., Schmidt, A.: Perceiving layered information on 3D displays using binocular disparity. In: Proceedings of the 2nd ACM International Symposium on Pervasive Displays, PerDis 2013, pp. 61–66. Association for Computing Machinery, New York (2013). https://doi.org/10.1145/2491568.2491582

  7. Broy, N., Alt, F., Schneegass, S., Pfleging, B.: 3D displays in cars: exploring the user performance for a stereoscopic instrument cluster. In: Proceedings of the 6th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, AutomotiveUI 2014, pp. 1–9. Association for Computing Machinery, New York (2014). https://doi.org/10.1145/2667317.2667319

  8. Broy, N., André, E., Schmidt, A.: Is stereoscopic 3D a better choice for information representation in the car? In: Proceedings of the 4th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, AutomotiveUI 2012, pp. 93–100. Association for Computing Machinery, New York (2012). https://doi.org/10.1145/2390256.2390270

  9. Broy, N., Guo, M., Schneegass, S., Pfleging, B., Alt, F.: Introducing novel technologies in the car: conducting a real-world study to test 3D dashboards. In: Proceedings of the 7th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, AutomotiveUI 2015, pp. 179–186. Association for Computing Machinery, New York (2015). https://doi.org/10.1145/2799250.2799280

  10. Chen, J., Bowman, D.A.: Domain-specific design of 3D interaction techniques: an approach for designing useful virtual environment applications. Presence: Teleoper. Virtual Environ. 18(5), 370–386 (2009). https://doi.org/10.1162/pres.18.5.370

  11. Chen, L., Wu, W.: Evaluation of the influence of interface symbols on user hand-gestures in augmented reality. In: Rebelo, F. (ed.) AHFE 2021. LNNS, vol. 261, pp. 814–821. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79760-7_98

    Chapter  Google Scholar 

  12. Diefenbach, S., Ullrich, D.: An experience perspective on intuitive interaction: central components and the special effect of domain transfer distance. Interact. Comput. 27(3), 210–234 (2015). https://doi.org/10.1093/iwc/iwv001

    Article  Google Scholar 

  13. Dünser, A., Billinghurst, M., Mancero, G.: Evaluating visual search performance with a multi layer display. In: Proceedings of the 20th Australasian Conference on Computer-Human Interaction: Designing for Habitus and Habitat, OZCHI 2008, pp. 307–310. Association for Computing Machinery, New York (2008). https://doi.org/10.1145/1517744.1517796

  14. Dzida, W., Freitag, R.: Making use of scenarios for validating analysis and design. IEEE Trans. Softw. Eng. 24(12), 1182–1196 (1998). https://doi.org/10.1109/32.738346

    Article  Google Scholar 

  15. Eilers, K., Nachreiner, F., Hänecke, K.: Entwicklung und überprüfung einer skala zur erfassung subjektiv erlebter anstrengung (1986)

    Google Scholar 

  16. Emoto, M., Niida, T., Okano, F.: Repeated vergence adaptation causes the decline of visual functions in watching stereoscopic television. J. Display Technol. 1(2), 328 (2005)

    Article  Google Scholar 

  17. Fariman, H.J., Alyamani, H.J., Kavakli, M., Hamey, L.: Designing a user-defined gesture vocabulary for an in-vehicle climate control system. In: Proceedings of the 28th Australian Conference on Computer-Human Interaction, OzCHI 2016, pp. 391–395. Association for Computing Machinery, New York (2016). https://doi.org/10.1145/3010915.3010955

  18. Georgiou, O., et al.: Haptic in-vehicle gesture controls. In: Proceedings of the 9th International Conference on Automotive User Interfaces and Interactive Vehicular Applications Adjunct, AutomotiveUI 2017, pp. 233–238. Association for Computing Machinery, New York (2017). https://doi.org/10.1145/3131726.3132045

  19. Graichen, L., Graichen, M., Krems, J.F.: Evaluation of gesture-based in-vehicle interaction: user experience and the potential to reduce driver distraction. Hum. Factors 61(5), 774–792 (2019). https://doi.org/10.1177/0018720818824253

    Article  Google Scholar 

  20. Hansberger, J.T., et al.: Dispelling the gorilla arm syndrome: the viability of prolonged gesture interactions. In: Lackey, S., Chen, J. (eds.) VAMR 2017. LNCS, vol. 10280, pp. 505–520. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57987-0_41

    Chapter  Google Scholar 

  21. Harrington, K., Large, D.R., Burnett, G., Georgiou, O.: Exploring the use of mid-air ultrasonic feedback to enhance automotive user interfaces. In: Proceedings of the 10th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, AutomotiveUI 2018, pp. 11–20. Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3239060.3239089

  22. He, Z., Zhang, R., Liu, Z., Tan, Z.: A user-defined gesture set for natural interaction in a smart kitchen environment. In: 2020 13th International Symposium on Computational Intelligence and Design (ISCID), pp. 122–125 (2020). https://doi.org/10.1109/ISCID51228.2020.00034

  23. Hincapié-Ramos, J.D., Guo, X., Moghadasian, P., Irani, P.: Consumed endurance: a metric to quantify arm fatigue of mid-air interactions. In: CHI 2014, one of a CHInd, pp. 1063–1072. Association for Computing Machinery, New York (2014). https://doi.org/10.1145/2556288.2557130

  24. Hoff, L., Hornecker, E., Bertel, S.: Modifying gesture elicitation: do kinaesthetic priming and increased production reduce legacy bias? In: Proceedings of the TEI ’16: Tenth International Conference on Tangible, Embedded, and Embodied Interaction, TEI 2016, pp. 86–91. Association for Computing Machinery, New York (2016). https://doi.org/10.1145/2839462.2839472

  25. Hoffman, D.M., Girshick, A.R., Akeley, K., Banks, M.S.: Vergence-accommodation conflicts hinder visual performance and cause visual fatigue. J. Vis. 8(3), 1–30 (2008). https://doi.org/10.1167/8.3.33

    Article  Google Scholar 

  26. Hoshi, T.: Compact ultrasound device for noncontact interaction. In: Nijholt, A., Romão, T., Reidsma, D. (eds.) ACE 2012. LNCS, vol. 7624, pp. 502–505. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34292-9_45

    Chapter  Google Scholar 

  27. Hoshi, T., Takahashi, M., Nakatsuma, K., Shinoda, H.: Touchable holography. In: Wigdor, D. (ed.) ACM SIGGRAPH 2009 Emerging Technologies, p. 1. ACM, New York (2009). https://doi.org/10.1145/1597956.1597979

  28. Howarth, P.A.: Potential hazards of viewing 3-D stereoscopic television, cinema and computer games: a review. Ophthalmic Physiol. Opt. J. Br. Coll. Ophthalmic Opticians (Optometrists) 31(2), 111–122 (2011). https://doi.org/10.1111/j.1475-1313.2011.00822.x

    Article  Google Scholar 

  29. Hwang, A.D., Peli, E.: Instability of the perceived world while watching 3D stereoscopic imagery: a likely source of motion sickness symptoms. i-Perception 5(6), 515–535 (2014). https://doi.org/10.1068/i0647

    Article  Google Scholar 

  30. Inoue, S., Makino, Y., Shinoda, H.: Active touch perception produced by airborne ultrasonic haptic hologram. In: Colgate, J.E. (ed.) IEEE World Haptics Conference 2015, pp. 362–367. IEEE, Piscataway (2015). https://doi.org/10.1109/WHC.2015.7177739

  31. Jacob, R.J., et al.: Reality-based interaction: a framework for post-wimp interfaces. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2008, pp. 201–210. Association for Computing Machinery, New York (2008). https://doi.org/10.1145/1357054.1357089

  32. Jahani, H., Kavakli, M.: Exploring a user-defined gesture vocabulary for descriptive mid-air interactions. Cogn. Technol. Work 20(1), 11–22 (2017). https://doi.org/10.1007/s10111-017-0444-0

    Article  Google Scholar 

  33. Jiang, H., et al.: Demographic effects on mid-air gesture preference for control of devices: implications for design. In: Black, N.L., Neumann, W.P., Noy, I. (eds.) IEA 2021. LNNS, vol. 223, pp. 379–386. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-74614-8_47

    Chapter  Google Scholar 

  34. Kara, P.A., Cserkaszky, A., Tamboli, R., Barsi, A., Martini, M., Balogh, T.: Light-field capture and display systems: limitations, challenges, and potentials. In: Hahlweg, C.F., Mulley, J.R. (eds.) Proceedings of the SPIE 10746, Novel Optical Systems Design and Optimization XXI, 1074604, p. 1074604 (2018). https://doi.org/10.1117/12.2320564

  35. Kazhura, M.: User-elicited gestural interaction with future in-car holographic 3D displays. In: Poster Session at the 20th International Conference on Mobile and Ubiquitous Multimedia (MUM 2021), Leuven, Belgium, 5–8 December (2021). https://doi.org/10.1145/3490632.3497832

  36. Kim, J.H., Ari, H., Madasu, C., Hwang, J.: Evaluation of hologram distances in reducing shoulder stress during augmented reality interactions. Proc. Hum. Factors Ergon. Soc. Ann. Meeting 64(1), 868–871 (2020). https://doi.org/10.1177/1071181320641201

    Article  Google Scholar 

  37. Kühnel, C., Westermann, T., Hemmert, F., Kratz, S., Müller, A., Möller, S.: I’m home: defining and evaluating a gesture set for smart-home control. Int. J. Hum. Comput. Stud. 69(11), 693–704 (2011). https://doi.org/10.1016/j.ijhcs.2011.04.005

    Article  Google Scholar 

  38. Kun, A.L., Boll, S., Schmidt, A.: Shifting gears: user interfaces in the age of autonomous driving. IEEE Pervasive Comput. 15(1), 32–38 (2016). https://doi.org/10.1109/MPRV.2016.14

    Article  Google Scholar 

  39. Lambooij, M., IJsselsteijn, W., Fortuin, M., Heynderickx, I.: Visual discomfort and visual fatigue of stereoscopic displays: a review. J. Imaging Sci. Technol. 53(3), 030201 (2009). https://doi.org/10.2352/J.ImagingSci.Technol.2009.53.3.030201

  40. Lou, X., Li, X., Hansen, P., Feng, Z.: An empirical evaluation on arm fatigue in free hand interaction and guidelines for designing natural user interfaces in VR. In: Chen, J.Y.C., Fragomeni, G. (eds.) HCII 2020. LNCS, vol. 12190, pp. 313–324. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49695-1_21

    Chapter  Google Scholar 

  41. Matsubayashi, A., Makino, Y., Shinoda, H.: Direct finger manipulation of 3D object image with ultrasound haptic feedback. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, pp. 1–11. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3290605.3300317

  42. Mauney, D., Howarth, J., Wirtanen, A., Capra, M.: Cultural similarities and differences in user-defined gestures for touchscreen user interfaces. In: Extended Abstracts on Human Factors in Computing Systems, CHI 2010, pp. 4015–4020. Association for Computing Machinery, New York (2010). https://doi.org/10.1145/1753846.1754095

  43. May, K.R., Gable, T.M., Walker, B.N.: Designing an in-vehicle air gesture set using elicitation methods. In: Proceedings of the 9th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, AutomotiveUI 2017, pp. 74–83. Association for Computing Machinery, New York (2017). https://doi.org/10.1145/3122986.3123015

  44. Microsoft: Mixed reality documentation: Direct manipulation with hands. https://docs.microsoft.com/en-us/windows/mixed-reality/design/direct-manipulation

  45. Mizobuchi, S., Terasaki, S., Häkkinen, J., Heinonen, E., Bergquist, J., Chignell, M.: The effect of stereoscopic viewing in a word-search task with a layered background. J. Soc. Inform. Display 16(11), 1105 (2008). https://doi.org/10.1889/JSID16.11.1105

    Article  Google Scholar 

  46. Mohs, C., et al.: Iuui - intuitive use of user interfaces. In: Hassenzahl, M., Bosenick, T., Müller-Prove, M., Peissner, M. (eds.) Tagungsband UP06, pp. 130–133. Fraunhofer Verlag, Stuttgart (2006). https://dl.gi.de/handle/20.500.12116/5992

  47. Morris, M.R., et al.: Reducing legacy bias in gesture elicitation studies. Interactions 21(3), 40–45 (2014). https://doi.org/10.1145/2591689

    Article  Google Scholar 

  48. Nacenta, M.A., Kamber, Y., Qiang, Y., Kristensson, P.O.: Memorability of pre-designed and user-defined gesture sets. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2013, pp. 1099–1108. Association for Computing Machinery, New York (2013). https://doi.org/10.1145/2470654.2466142

  49. Nielsen, J.: Usability Engineering. Kaufmann, Amsterdam (1994)

    MATH  Google Scholar 

  50. Nielsen, M., Störring, M., Moeslund, T.B., Granum, E.: A procedure for developing intuitive and ergonomic gesture interfaces for HCI. In: Camurri, A., Volpe, G. (eds.) GW 2003. LNCS (LNAI), vol. 2915, pp. 409–420. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24598-8_38

    Chapter  Google Scholar 

  51. Norman, D.A.: The Design of Everyday Things. Basic Books, New York (2013). Revised and expanded edition

    Google Scholar 

  52. On-Road Automated Driving (ORAD) committee: Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles, June 2018. https://doi.org/10.4271/J3016_201806

  53. Ortega, F.R., et al.: Gesture elicitation for 3D travel via multi-touch and mid-air systems for procedurally generated pseudo-universe. In: 2017 IEEE Symposium on 3D User Interfaces (3DUI), pp. 144–153. IEEE, Piscataway (2017). https://doi.org/10.1109/3DUI.2017.7893331

  54. Perera, M.: Personalised human device interaction through context aware augmented reality. In: Proceedings of the 2020 International Conference on Multimodal Interaction, ICMI 2020, pp. 723–727. Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3382507.3421157

  55. Pham, T., Vermeulen, J., Tang, A., MacDonald Vermeulen, L.: Scale impacts elicited gestures for manipulating holograms: implications for AR gesture design. In: Proceedings of the 2018 Designing Interactive Systems Conference, DIS 2018, pp. 227–240. Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3196709.3196719

  56. Pickering, C.A., Burnham, K.J., Richardson, M.J.: A research study of hand gesture recognition technologies and applications for human vehicle interaction. In: 2007 3rd Institution of Engineering and Technology Conference on Automotive Electronics, pp. 1–15. IEEE Xplore, Piscataway (2007). https://ieeexplore.ieee.org/document/4383638

  57. Piumsomboon, T., Clark, A., Billinghurst, M., Cockburn, A.: User-defined gestures for augmented reality. In: Kotzé, P., Marsden, G., Lindgaard, G., Wesson, J., Winckler, M. (eds.) INTERACT 2013. LNCS, vol. 8118, pp. 282–299. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40480-1_18

    Chapter  Google Scholar 

  58. Reichelt, S., Häussler, R., Fütterer, G., Leister, N.: Depth cues in human visual perception and their realization in 3D displays. In: Javidi, B., Jung-Young, S., Thomas, J.T., Desjardins, D.D. (eds.) Proceedings Volume 7690: Three-Dimensional Imaging, Visualization, and Display 2010 and Display Technologies and Applications for Defense, Security, and Avionics IV, vol. 7690 (2010). https://doi.org/10.1117/12.850094

  59. Rempel, D., Camilleri, M.J., Lee, D.L.: The design of hand gestures for human-computer interaction: lessons from sign language interpreters. Int. J. Hum. Comput. Stud. 72(10–11), 728–735 (2015). https://doi.org/10.1016/j.ijhcs.2014.05.003

    Article  Google Scholar 

  60. Ren, Z., Jiang, B., Deng, L.: Research of interactive gesture usability of navigation application based on intuitive interaction. In: Kurosu, M. (ed.) HCII 2020. LNCS, vol. 12182, pp. 96–105. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49062-1_6

    Chapter  Google Scholar 

  61. Russell, V., Steven, P.W., Dean, E.N.: Effective declutter of complex flight displaysusing stereoptic 3-D cueing. Technical report. ADA279764, NASA Hampton VA Langley Research Center, Hampton, VA, April 1994. https://apps.dtic.mil/sti/pdfs/ADA279764.pdf

  62. Sandbrink, J., Vollrath, M., Krems, J.F.: Gestaltungspotenziale für Infotainment-Darstellungen im Fahrzeug: Dissertation, AutoUni - Schriftenreihe, vol. 132. Springer Fachmedien Wiesbaden, Wiesbaden (2019). https://doi.org/10.1007/978-3-658-23942-8

  63. Schmidt, A.: Following or leading? The HCI community and new interaction technologies. Interactions 22(1), 74–77 (2015). https://doi.org/10.1145/2692980

    Article  Google Scholar 

  64. Serrano, M., Hildebrandt, D., Subramanian, S., Irani, P.: Identifying suitable projection parameters and display configurations for mobile true-3D displays. In: International Conference on Human-Computer Interaction with Mobile Devices and Services (MobileHCI 2014), Toronto, ON, Canada, pp. 135–143, September 2014. https://hal.archives-ouvertes.fr/hal-01414974

  65. Solimini, A.G.: Are there side effects to watching 3D movies? A prospective crossover observational study on visually induced motion sickness. PLoS ONE 8(2), e56160 (2013). https://doi.org/10.1371/journal.pone.0056160

  66. Son, M., Jung, J., Park, W.: Evaluating the utility of two gestural discomfort evaluation methods. PLoS ONE 12(4), e0176123 (2017). https://doi.org/10.1371/journal.pone.0176123

  67. Stern, H.I., Wachs, J.P., Edan, Y.: Designing hand gesture vocabularies for natural interaction by combining psycho-physiological and recognition factors. Int. J. Semant. Comput. 02(01), 137–160 (2011). https://doi.org/10.1142/S1793351X08000385

    Article  Google Scholar 

  68. Ting, C.H., Jen, T.H., Chen, C.H., Shieh, H.P.D., Huang, Y.P.: 3D air-touch user interface with high touch accuracy on stereoscopic displays. J. Display Technol. 12(5), 429–434 (2016). https://doi.org/10.1109/JDT.2015.2495176

    Article  Google Scholar 

  69. Tsandilas, T.: Fallacies of agreement: a critical review of consensus assessment methods for gesture elicitation. ACM Trans. Comput.-Hum. Interact. 25(3), 1–49 (2018). https://doi.org/10.1145/3182168

  70. Ujike, H., Watanabe, H.: Effects of stereoscopic presentation on visually induced motion sickness. In: Woods, A.J., Holliman, N.S., Dodgson, N.A. (eds.) Stereoscopic Displays and Applications XXII, vol. 7863, pp. 357–362. SPIE (2011). https://doi.org/10.1117/12.873500

  71. Ullrich, D., Diefenbach, S.: Intui. exploring the facets of intuitive interaction. In: Ziegler, J., Schmidt, A. (eds.) Mensch & Computer 2010: Interaktive Kulturen, pp. 251–260. Oldenbourg Verlag, München (2010). https://dl.gi.de/handle/20.500.12116/7107

  72. Ultraleap: Ultrahaptics knowledge base. https://developer.ultrahaptics.com/knowledge-base/

  73. van Boven, L., Gilovich, T.: To do or to have? That is the question. J. Pers. Soc. Psychol. 85(6), 1193–1202 (2003). https://doi.org/10.1037/0022-3514.85.6.1193

  74. Vatavu, R.D., Wobbrock, J.O.: Formalizing agreement analysis for elicitation studies: new measures, significance test, and toolkit. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, CHI 2015, pp. 1325–1334. Association for Computing Machinery, New York (2015). https://doi.org/10.1145/2702123.2702223

  75. Vatavu, R.D., Zaiti, I.A.: Leap gestures for TV: insights from an elicitation study. In: Proceedings of the ACM International Conference on Interactive Experiences for TV and Online Video, TVX 2014, pp. 131–138. Association for Computing Machinery, New York (2014). https://doi.org/10.1145/2602299.2602316

  76. Villarreal-Narvaez, S., Vanderdonckt, J., Vatavu, R.D., Wobbrock, J.O.: A systematic review of gesture elicitation studies: what can we learn from 216 studies? In: Proceedings of the 2020 ACM Designing Interactive Systems Conference, DIS 2020, pp. 855–872. Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3357236.3395511

  77. Vogiatzidakis, P., Koutsabasis, P.: Gesture elicitation studies for mid-air interaction: a review. Multimodal Technol. Interact. 2(4), 65 (2018). https://doi.org/10.3390/mti2040065

  78. Vuletic, T., Duffy, A., Hay, L., McTeague, C., Campbell, G., Grealy, M.: Systematic literature review of hand gestures used in human computer interaction interfaces. Int. J. Hum. Comput. Stud. 129, 74–94 (2019). https://doi.org/10.1016/j.ijhcs.2019.03.011

    Article  Google Scholar 

  79. Weidner, F., Broll, W.: Interact with your car: a user-elicited gesture set to inform future in-car user interfaces. In: Proceedings of the 18th International Conference on Mobile and Ubiquitous Multimedia, MUM 2019. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3365610.3365625

  80. Wiegand, G., Mai, C., Holländer, K., Hussmann, H.: InCarAR: a design space towards 3D augmented reality applications in vehicles. In: Proceedings of the 11th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, AutomotiveUI 2019, pp. 1–13. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3342197.3344539

  81. William Wong, B.L., Joyekurun, R., Mansour, H., Amaldi, P., Nees, A., Villanueva, R.: Depth, layering and transparency: developing design techniques. In: Proceedings of the 17th Australia Conference on Computer-Human Interaction: Citizens Online: Considerations for Today and the Future, OZCHI 2005, pp. 1–10. Computer-Human Interaction Special Interest Group (CHISIG) of Australia, Narrabundah (2005). https://doi.org/10.5555/1108368.1108406

  82. Wobbrock, J.O., Aung, H.H., Rothrock, B., Myers, B.A.: Maximizing the guessability of symbolic input. In: CHI 2005 Extended Abstracts on Human Factors in Computing Systems, CHI EA 2005, pp. 1869–1872. Association for Computing Machinery, New York (2005). https://doi.org/10.1145/1056808.1057043

  83. Wobbrock, J.O., Morris, M.R., Wilson, A.D.: User-defined gestures for surface computing. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2009, pp. 1083–1092. Association for Computing Machinery, New York (2009). https://doi.org/10.1145/1518701.1518866

  84. Wu, H., Wang, J., Zhang, X.L.: User-centered gesture development in TV viewing environment. Multimed. Tools Appl. 75(2), 733–760 (2014). https://doi.org/10.1007/s11042-014-2323-5

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryia Kazhura .

Editor information

Editors and Affiliations

Ethics declarations

Conflicts of Interest

The author is employed by Volkswagen AG. The study was conducted and financed by Volkswagen AG. The author declares no competing conflict of interest. The results, opinions and conclusions expressed in this publication are not necessarily those of Volkswagen AG.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kazhura, M. (2022). Exploring New Depths: How Could Passengers Interact with Future In-Car Holographic 3D Displays?. In: Krömker, H. (eds) HCI in Mobility, Transport, and Automotive Systems. HCII 2022. Lecture Notes in Computer Science, vol 13335. Springer, Cham. https://doi.org/10.1007/978-3-031-04987-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-04987-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-04986-6

  • Online ISBN: 978-3-031-04987-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics