Abstract
Visual information contains the most important characteri-stics of a movie regarding the related content and filming techniques. Especially the way the camera moves to capture the scene is vital to define the director’s aesthetics. However, most of the machine learning tasks existing in the literature treat the movie as shallow content, rather than as an artistic work, and therefore focus on detecting objects and faces, recognizing activities and extracting plot-related topics. On the other hand, cinematography is closely connected to the choice of different ways to handle the camera, and thus camera movements include information that is useful in order to analyse the artistic style of a movie. In this work we present an original, publicly available (https://github.com/magcil/movie_shot_classification_dataset) dataset for film shot type classification that is associated with the distinction across 10 types of camera movements that cover the vast majority of types of shots in real movies. In addition, two different methods are evaluated on the new dataset, one static that is based on feature statistics across frames, and one sequential that tries to predict the target class based on the input frame sequence using LSTMs. Based on the evaluation process it is inferred that the sequential method is more suited for modeling the camera movements.
Keywords
- Shot classification
- Camera movement classification
- Movie analysis
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Bak, H.Y., Park, S.B.: Comparative study of movie shot classification based on semantic segmentation. Appl. Sci. 10(10), 3390 (2020). https://doi.org/10.3390/app10103390, https://www.mdpi.com/2076-3417/10/10/3390
Baraldi, L., Grana, C., Cucchiara, R.: Shot and scene detection via hierarchical clustering for re-using broadcast video. In: Azzopardi, G., Petkov, N. (eds.) CAIP 2015. LNCS, vol. 9256, pp. 801–811. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23192-1_67
Benini, S., Svanera, M., Adami, N., Leonardi, R., Kovács, A.B.: Shot scale distribution in art films. Multimedia Tools Appl. 75(23), 16499–16527 (2016). https://doi.org/10.1007/s11042-016-3339-9
Bhattacharya, S., Mehran, R., Sukthankar, R., Shah, M.: Classification of cinematographic shots using lie algebra and its application to complex event recognition. IEEE Trans. Multimedia 16(3), 686–696 (2014)
Bougiatiotis, K., Giannakopoulos, T.: Enhanced movie content similarity based on textual, auditory and visual information. Expert Syst. Appl. 96, 86–102 (2018)
Braudy, L.: Film: an international history of the medium. Film Q. (ARCHIVE) 48(3), 59 (1995)
Canini, L., Benini, S., Leonardi, R.: Classifying cinematographic shot types. Multimedia Tools Appl. 62(1), 51–73 (2013)
Choi, S.M., Ko, S.K., Han, Y.S.: A movie recommendation algorithm based on genre correlations. Expert Syst. Appl. 39(9), 8079–8085 (2012)
Diao, Q., Qiu, M., Wu, C.Y., Smola, A.J., Jiang, J., Wang, C.: Jointly modeling aspects, ratings and sentiments for movie recommendation (JMARS). In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 193–202 (2014)
Ertugrul, A.M., Karagoz, P.: Movie genre classification from plot summaries using bidirectional LSTM. In: 2018 IEEE 12th International Conference on Semantic Computing (ICSC), pp. 248–251. IEEE (2018)
Greff, K., Srivastava, R.K., Koutník, J., Steunebrink, B.R., Schmidhuber, J.: LSTM: a search space odyssey. IEEE Trans. Neural Networks Learn. Syst. 28(10), 2222–2232 (2016)
Haq, I.U., Muhammad, K., Hussain, T., Kwon, S., Sodanil, M., Baik, S.W., Lee, M.Y.: Movie scene segmentation using object detection and set theory. Int. J. Distrib. Sens. Networks 15(6), 1550147719845277 (2019)
Hasan, M.A., Xu, M., He, X., Xu, C.: CAMHID: camera motion histogram descriptor and its application to cinematographic shot classification. IEEE Trans. Circ. Syst. Video Technol. 24(10), 1682–1695 (2014). https://doi.org/10.1109/TCSVT.2014.2345933
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456. PMLR (2015)
Lekakos, G., Caravelas, P.: A hybrid approach for movie recommendation. Multimedia Tools Appl. 36(1), 55–70 (2008)
Li, K., Li, S., Oh, S., Fu, Y.: Videography-based unconstrained video analysis. IEEE Trans. Image Process. 26(5), 2261–2273 (2017). https://doi.org/10.1109/TIP.2017.2678800
Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2
Lucas, B.D., Kanade, T., et al.: An iterative image registration technique with an application to stereo vision. Vancouver, British Columbia (1981)
Minhas, R.A., Javed, A., Irtaza, A., Mahmood, M.T., Joo, Y.B.: Shot classification of field sports videos using AlexNet convolutional neural network. Appl. Sci. 9(3), 483 (2019)
Park, S.C., Lee, H.S., Lee, S.W.: Qualitative estimation of camera motion parameters from the linear composition of optical flow. Pattern Recogn. 37(4), 767–779 (2004)
Psallidas, T., Koromilas, P., Giannakopoulos, T., Spyrou, E.: Multimodal summarization of user-generated videos. Appl. Sci. 11(11), 5260 (2021). https://doi.org/10.3390/app11115260, https://www.mdpi.com/2076-3417/11/11/5260
Rao, A., et al.: A unified framework for shot type classification based on subject centric lens. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12356, pp. 17–34. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_2
Rasheed, Z., Shah, M.: Scene detection in Hollywood movies and tv shows. In: 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Proceedings, vol. 2, p. II-343. IEEE (2003)
Sang, J., Xu, C.: Character-based movie summarization. In: Proceedings of the 18th ACM International Conference on Multimedia, pp. 855–858 (2010)
Savardi, M., Signoroni, A., Migliorati, P., Benini, S.: Shot scale analysis in movies by convolutional neural networks. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 2620–2624. IEEE (2018)
Simões, G.S., Wehrmann, J., Barros, R.C., Ruiz, D.D.: Movie genre classification with convolutional neural networks. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 259–266. IEEE (2016)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Subramaniyaswamy, V., Logesh, R., Chandrashekhar, M., Challa, A., Vijayakumar, V.: A personalised movie recommendation system based on collaborative filtering. Int. J. High Perform. Comput. Networking 10(1–2), 54–63 (2017)
Tsai, C.M., Kang, L.W., Lin, C.W., Lin, W.: Scene-based movie summarization via role-community networks. IEEE Trans. Circ. Syst. Video Technol. 23(11), 1927–1940 (2013)
Ul Haq, I., Ullah, A., Muhammad, K., Lee, M.Y., Baik, S.W.: Personalized movie summarization using deep CNN-assisted facial expression recognition. In: Complexity 2019 (2019)
Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, vol. 1, p. I-I. IEEE (2001)
Wang, H.L., Cheong, L.F.: Taxonomy of directing semantics for film shot classification. IEEE Trans. Circ. Syst. Video Technol. 19(10), 1529–1542 (2009). https://doi.org/10.1109/TCSVT.2009.2022705
Zhou, H., Hermans, T., Karandikar, A.V., Rehg, J.M.: Movie genre classification via scene categorization. In: Proceedings of the 18th ACM International Conference on Multimedia, pp. 747–750 (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Petrogianni, A., Koromilas, P., Giannakopoulos, T. (2022). Film Shot Type Classification Based on Camera Movement Styles. In: Pinho, A.J., Georgieva, P., Teixeira, L.F., Sánchez, J.A. (eds) Pattern Recognition and Image Analysis. IbPRIA 2022. Lecture Notes in Computer Science, vol 13256. Springer, Cham. https://doi.org/10.1007/978-3-031-04881-4_48
Download citation
DOI: https://doi.org/10.1007/978-3-031-04881-4_48
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-04880-7
Online ISBN: 978-3-031-04881-4
eBook Packages: Computer ScienceComputer Science (R0)
-
Published in cooperation with
http://www.iapr.org/