Skip to main content

Phase State System for Generating Interactive Behaviors for Humanoid Robots

  • 1235 Accesses

Part of the Mechanisms and Machine Science book series (Mechan. Machine Science,volume 120)

Abstract

When it comes to physical collaboration between humans and robots, robots currently have a shortcoming: their ability to observe and adapt to human dynamics is limited. This leads to inefficient collaboration and unergonomic interaction. In this work, we combine a dynamic phase state system (PSS) based on a network of stable heteroclinic channels (SHC) with Compliant Movement Primitives (CMP). The combination of PSS and CMP enables intuitive human interaction in tasks where humans and robots physically cooperate. The capabilities of the control system were demonstrated in simulations involving helping a humanoid bipedal robot Talos stand up from a squat position by pulling on its hands.

Keywords

  • Humanoids
  • Compliant movement primitives
  • Phase state system

This work was supported by Slovenian Research Agency grant N2-0153.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Brecelj, T., Petrič, T.: Angular dependency of the zero moment point. In: Zeghloul, S., Laribi, M.A., Sandoval, J. (eds.) Advances in Service and Industrial Robotics, pp. 135–144. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75259-0-15

    CrossRef  Google Scholar 

  2. Deimel, R.: Reactive interaction through body motion and the phase-state-machine. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), November 2019

    Google Scholar 

  3. Denisa, M., Gams, A., Ude, A., Petric, T.: Learning compliant movement primitives through demonstration and statistical generalization. IEEE/ASME Trans. Mechatron. (2016). https://doi.org/10.1109/TMECH.2015.2510165

    CrossRef  Google Scholar 

  4. Denisa, M., Petrič, T., Asfour, T., Ude, A.: Synthesizing compliant reaching movements by searching a database of example trajectories. In: International Conference on Humanoid Robots, pp. 540–546 (2013)

    Google Scholar 

  5. Horchler, A.D., Daltorio, K.A., Chiel, H.J., Quinn, R.D.: Designing responsive pattern generators: stable heteroclinic channel cycles for modeling and control. Bioinspir. Biom. 10(2), 1–16 (2015). https://doi.org/10.1088/1748-3190/10/2/026001

    CrossRef  Google Scholar 

  6. Ijspeert, A.J., Nakanishi, J., Hoffmann, H., Pastor, P., Schaal, S.: Dynamical movement primitives: learning attractor models for motor behaviors. Neural Comput. 25(2), 328–373 (2013)

    CrossRef  MathSciNet  Google Scholar 

  7. Laurent, G., Stopfer, M., Friedrich, R.W., Rabinovich, M.I., Volkovskii, A., Abarbanel, H.D.: Odor encoding as an active, dynamical process: experiments, computation, and theory. Ann. Rev. Neurosci. 24(1), 263–297 (2001). https://doi.org/10.1146/annurev.neuro.24.1.263

    CrossRef  Google Scholar 

  8. Miškovič, L., Koprivšek Leskovar, R., Gams, A., Petrič, T.: Optimizing end-effector force during the sit-stand task on the TALOS humanoid bipedal robot. In: Žemva, A., Trost, A. (eds.) Proceedings of the 30th International Electrotechnical and Computer Science Conference ERK 2021, pp. 175–178. Slovenska sekcija IEEE: Fakulteta za elektrotehniko, Ljubljana (2021)

    Google Scholar 

  9. Petrič, T., Gams, A., Colasanto, L., Ijspeert, A.J., Ude, A.: Accelerated sensorimotor learning of compliant movement primitives. IEEE Trans. Robot. 34(6), 1636–1642 (2018). https://doi.org/10.1109/TRO.2018.2861921

    CrossRef  Google Scholar 

  10. Rabinovich, M.I., Huerta, R., Varona, P., Afraimovich, V.S.: Transient cognitive dynamics, metastability, and decision making. PLoS Comput. Biol. 4(5), 25–30 (2008). https://doi.org/10.1371/journal.pcbi.1000072

    CrossRef  MathSciNet  Google Scholar 

  11. Saeedvand, S., Jafari, M., Aghdasi, H.S., Baltes, J.: A comprehensive survey on humanoid robot development. Knowl. Eng. Rev. 34, e20 (2019). https://doi.org/10.1017/S0269888919000158

    CrossRef  Google Scholar 

  12. Stasse, O., et al.: TALOS: A new humanoid research platform targeted for industrial applications. In: IEEE-RAS International Conference on Humanoid Robots, pp. 689–695 (2017). https://doi.org/10.1109/HUMANOIDS.2017.8246947

  13. Ude, A., Nemec, B., Petrič, T., Morimoto, J.: Orientation in cartesian space dynamic movement primitives. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 2997–3004, May 2014

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadej Petrič .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Petrič, T., Žlajpah, L. (2022). Phase State System for Generating Interactive Behaviors for Humanoid Robots. In: Müller, A., Brandstötter, M. (eds) Advances in Service and Industrial Robotics. RAAD 2022. Mechanisms and Machine Science, vol 120. Springer, Cham. https://doi.org/10.1007/978-3-031-04870-8_58

Download citation