Skip to main content

Nonlinear Backstepping Control of a Grid-Connected Doubly Fed Induction Generator Wind Turbine

  • Chapter
  • First Online:
Artificial Intelligence of Things for Smart Green Energy Management

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 446))

Abstract

This chapter suggests a nonlinear Backstepping Control approach to manage a variable wind turbine system. The generator used is a dual-fed induction generator (DFIG). The DFIG’s stator is instantly linked to the electrical grid. However, its rotor is connected to the electrical grid through a bidirectional Back-to-Back converter. The proposed methodology, which is based on the stability of the Lyapunov Function, is employed to generate a pulse width modulation (PWM) for the converters. The chapter aims to manage the active and reactive power independently that are injected into the power system. Then again, a maximum power point tracking strategy is used to gain the highest extracted power of a variable wind velocity profile. The introduced control is compared to a vector control strategy. The Simulation results by dint of Matlab/Simulink environment demonstrate that the recommended methodology ensures better system findings in terms of stability, static error, and overshoot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mensou, S., Essadki, A., Minka, I., Nasser, T., Bououlid Idrissi, B.: Backstepping controller for a variable wind speed energy conversion system based on a DFIG. Int. J. Electr. Comput. Eng. 12(9), 598–604 (2018)

    Google Scholar 

  2. Ouassaid, M., Elyaalaoui, K., Cherkaoui, M.: Sliding mode control of induction generator wind turbine connected to the grid. In: Vaidyanathan S., Volos C. (eds.) Advances and Applications in Nonlinear Control Systems. Studies in Computational Intelligence, vol. 635. Springer, Cham (2016)

    Google Scholar 

  3. Sawant, M., Thakare, S., Rao, A.P., Feijóo-Lorenzo, A.E., Bokde, N.D.: A review on state-of-the-art reviews in wind-turbine- and wind-farm related topics. Energies 14 (2021)

    Google Scholar 

  4. Chetouani, E., Errami, Y., Obbadi, A., Sahnoun, S.: Maximum power point tracking design using particle swarm optimization algorithm for wind energy conversion system connected to the grid. Renew. Energy Syst. 445–470 (2021)

    Google Scholar 

  5. Anca, D.H.: Wind turbine technologies. In: Letcher, T.M. (eds.) Wind Energy Engineering. Academic Press, pp. 145–160 (2017)

    Google Scholar 

  6. Ihedrane, Y., El Bekkali, C., Bossoufi, B., Bouderbala, M.: Control of power of a DFIG generator with MPPT technique for wind turbines variable speed. In: Derbel, N., Zhu, Q. (eds.) Modeling, Identification and Control Methods in Renewable Energy Systems. Green Energy and Technology. Springer, Singapore, pp. 105–129 (2019)

    Google Scholar 

  7. Jose, J.T., Chattopadhyay, A.B: Mathematical formulation of feedback linearizing control of doubly fed induction generator including magnetic saturation effects. Math. Probl. Eng. 2020, 1–10 (2020)

    Google Scholar 

  8. Mazouz, F., Belkacem, S., Harbouche, Y., Abdessemed, R., Ouchen, S.: Active and reactive power control of a DFIG for variable speed wind energy conversion. In: Proceedings of the 6th International Conference on Systems and Control, University of Batna 2, Batna, Algeria (2017)

    Google Scholar 

  9. Bouderbala, M., Bossoufi, B., Lagrioui, A., Taoussi, M., Aroussi, H., Ihedrane, Y.: Direct and indirect vector control of a doubly fed induction generator based in a wind energy conversion system. Int. J. Electr. Comput. Eng. (IJECE) 9(3), 1531–1540 (2018)

    Google Scholar 

  10. Chetouani, E., Errami, Y., Obbadi, A., Sahnoun, S.: Optimal tuning of PI controllers using adaptive particle swarm optimization for doubly-fed induction generator connected to the grid during a voltage dip. Bull. Electr. Eng. Inform. 10(5), 1–12 (2021)

    Google Scholar 

  11. Alrifai, M., Zribi, M., Rayan, M.: Feedback linearization controller for a wind energy power system. Energies 9, 771 (2016)

    Article  Google Scholar 

  12. Amin, I.K., Uddin, M.N.: Nonlinear control operation of DFIG-based WECS incorporated with machine loss reduction scheme. IEEE Trans. Power Electron. 35(7), 7031–7044 (2020)

    Article  Google Scholar 

  13. Solis, C., Clempner, J., Poznyak, A.: Robust extremum seeking for a second order uncertain plant using a sliding mode controller. Int. J. Appl. Math. Comput. Sci. 29(4), 703–712 (2020)

    Article  MathSciNet  Google Scholar 

  14. Pimpale, Y., Parvat, B.J.: Design of sliding mode control for nonlinear uncertain system. Int. J. Adv. Res. Innov. Ideas Educ. 4(5), 331–336 (2018)

    Google Scholar 

  15. Vaidyanathan, S., Azar, A.T.: An introduction to backstepping control. Backstepping Control of Nonlinear Dynamical Systems. Elsevier Inc., pp. 1–32 (2021)

    Google Scholar 

  16. Chetouani, E., Errami, Y., Obbadi, A., Sahnoun, S.: Hybrid control using adaptive particle swarm optimization and integral backstepping control of grid-connected doubly fed induction generator. Trends Sci. (TIS) 18(23), 712–729 (2021)

    Article  Google Scholar 

  17. Chavero-Navarrete, E., Trejo-Perea, M., Jáuregui-Correa, J.C., Carrillo-Serrano, R.V., Ríos-Moreno, J.G.: Expert control systems for maximum power point tracking in a wind turbine with PMSG: state of the art. Appl. Sci. 9(12), 24–69 (2019)

    Google Scholar 

  18. Zhang, Y., Zhang, L., Liu, Y.: Implementation of maximum power point tracking based on variable speed forecasting for wind energy systems. Processes 7(3), 158–176 (2019)

    Article  Google Scholar 

  19. Chetouani, E., Errami, Y., Obbadi, A., Sahnoun, S.: Design of optimal backstepping control for a wind power plant system using the adaptive weighted particle swarm optimization. Int. J. Intell. Eng. Syst. 14(6), 125–136 (2021)

    Google Scholar 

  20. Chojaa, H., Derouich, A., Taoussi, M., Zamzoum, O., Hanafi, A.: An improved performance variable speed wind turbine driving a doubly fed induction generator using sliding mode strategy. In: IEEE 2nd International Conference on Electronics, Control, Optimization and Computer Science. IEEE, Kenitra, Morocco, pp. 1–8 (2020)

    Google Scholar 

  21. Saavedra-Montes, A.J., Ramos-Paja, C.A., Ramírez-Gómez, C.A.: Model-based maximum power point tracking for wind generators. Revista Facultad de Ingeniería 79, 75–83 (2016)

    Google Scholar 

  22. Errami, Y., Obbadi, A., Sahnoun, S.: An improved control of grid integrated doubly fed induction generator. Int. J. Power Energy Convers. 12(3), 219–235 (2021)

    Article  Google Scholar 

  23. Errami, Y., Obbadi, A., Sahnoun, S.: Control of PMSG wind electrical system in network context and during the MPP tracking process. Int. J. Syst. Control Commun. 11(2), 200–225 (2020)

    Article  Google Scholar 

  24. Dahbi, A., Nait-Said, N., Nait-Said, M.: A novel combined MPPT-pitch angle control for wide range variable speed wind turbine based on neural network. Int. J. Hydrogen Energy 41(22), 9427–9442 (2016)

    Article  Google Scholar 

  25. Chetouani, E., Errami, Y., Obbadi, A., Sahnoun, S.: Backstepping and indirect vector control for rotor side converter of doubly fed-induction generator with maximum power point tracking. In: Motahhir, S., Bossoufi, B. (eds.) Digital Technologies and Applications. ICDTA 2021. Lecture Notes in Networks and Systems, vol. 211, Springer, Cham, pp. 1711–1723 (2021)

    Google Scholar 

  26. Elazzaoui, M.: Modeling and control of a wind system based doubly fed induction generator: optimization of the power produced. J. Electr. Electron. Syst. 4(1) (2015)

    Google Scholar 

  27. Chetouani, E., Errami, Y., Obbadi, A., Sahnoun, S., Wadawa, B.: Nonlinear backstepping with integral action for wind power plant based on doubly fed induction generator connected to the non-ideal grid. Technol. Econ. Smart Grids Sustain. Energy 7(4) (2022)

    Google Scholar 

  28. Errami, Y., Obbadi, A., Sahnoun, S., Benhmida M., Ouassaid, M., Maaroufi, M.: Design of a nonlinear backstepping control strategy of grid interconnected wind power system based PMSG. AIP Conf. Proc. 1758 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elmostafa Chetouani .

Editor information

Editors and Affiliations

Appendix

Appendix

See Tables 1 and 2.

Table 1 A list of input variables
Table 2 Vector control gains of the PI regulators

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chetouani, E., Errami, Y., Obbadi, A., Sahnoun, S. (2022). Nonlinear Backstepping Control of a Grid-Connected Doubly Fed Induction Generator Wind Turbine. In: El Himer, S., Ouaissa, M., Emhemed, A.A.A., Ouaissa, M., Boulouard, Z. (eds) Artificial Intelligence of Things for Smart Green Energy Management. Studies in Systems, Decision and Control, vol 446. Springer, Cham. https://doi.org/10.1007/978-3-031-04851-7_3

Download citation

Publish with us

Policies and ethics