Skip to main content

Multi-Core Implementation of Geometric Multidimensional Scaling for Large-Scale Data

  • Conference paper
  • First Online:
Information Systems and Technologies (WorldCIST 2022)

Abstract

A well-known and widely used technique for mapping data from high-dimensional space to lower-dimensional space is multidimensional scaling (MDS). Although MDS, as a dimensionality reduction method used for data visualization, demonstrates great versatility, it is computationally demanding, especially when the data set is not fixed and its size is constantly growing. Traditional MDS approaches are limited when analyzing very large data sets, as they require very long computation times and large amounts of memory. A way to minimize MDS stress, which can be used to reduce the dimensionality of large-scale data, has been developed using the ideas of Geometric MDS, where all points in a low-dimensional space change their coordinates simultaneously and independently during a single iteration of stress minimization. It is shown in this paper that Geometric MDS allows the implementation of parallel computing for the dimensionality reduction process of large-scale data using multithreaded multi-core processors. We explore how the computational time consumption of data dimensionality reduction and multidimensional data visualization depends on the number of processor cores or processor threads used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dzemyda, G., Kurasova, O., Žilinskas, J.: Multidimensional Data Visualization. SOIA, vol. 75. Springer, New York (2013). https://doi.org/10.1007/978-1-4419-0236-8

    Book  MATH  Google Scholar 

  2. Dos Santos, S., Brodlie, K.: Gaining understanding of multivariate and multidimensional data through visualization. Comput. Graph. 28(3), 311–325 (2004)

    Article  Google Scholar 

  3. Buja, A., Swayne, D.F., Littman, M.L., Dean, N., Hofmann, H., Chen, L.: Data visualization with multidimensional scaling. J. Comput. Graph. Stat. 17(2), 444–472 (2008)

    Article  MathSciNet  Google Scholar 

  4. Lee, J.A., Verleysen, M.: Nonlinear Dimensionality Reduction. Springer Science & Business Media, Heidelberg (2007). https://doi.org/10.1007/978-0-387-39351-3

  5. Van Der Maaten, L., et al.: Dimensionality reduction: a comparative. J. Mach. Learn. Res. 10(66–71), 13 (2009)

    Google Scholar 

  6. Medvedev, V., Dzemyda, G., Kurasova, O., Marcinkevičius, V.: Efficient data projection for visual analysis of large data sets using neural networks. Informatica 22(4), 507–520 (2011)

    Article  Google Scholar 

  7. Ivanikovas, S., Medvedev, V., Dzemyda, G.: Parallel realizations of the SAMANN algorithm. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds.) ICANNGA 2007. LNCS, vol. 4432, pp. 179–188. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71629-7_21

    Chapter  Google Scholar 

  8. Jolliffe, I.: Principal component analysis. Wiley Online Library (2005)

    Google Scholar 

  9. Jackson, J.E.: A User’s Guide to Principal Components, vol. 587. Wiley, Hoboken (2005)

    Google Scholar 

  10. Torgerson, W.S.: Theory and Methods of Scaling. Wiley, Hoboken (1958)

    Google Scholar 

  11. Borg, I., Groenen, P.J.: Modern Multidimensional Scaling: Theory and Applications. Springer Science & Business Media, Heidelberg (2005). https://doi.org/10.1007/0-387-28981-X

  12. Borg, I., Groenen, P.J., Mair, P.: Applied Multidimensional Scaling and Unfolding. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-73471-2

  13. Xu, X., Liang, T., Zhu, J., Zheng, D., Sun, T.: Review of classical dimensionality reduction and sample selection methods for large-scale data processing. Neurocomputing 328, 5–15 (2019)

    Article  Google Scholar 

  14. Markeviciute, J., Bernataviciene, J., Levuliene, R., Medvedev, V., Treigys, P., Venskus, J.: Attention-based and time series models for short-term forecasting of COVID-19 spread. CMC-Comput. Mater. Continu. 70(1), 695–714 (2022). https://doi.org/10.32604/cmc.2022.018735

  15. Dzemyda, G., Sabaliauskas, M.: A novel geometric approach to the problem of multidimensional scaling. In: Sergeyev, Y.D., Kvasov, D.E. (eds.) NUMTA 2019. LNCS, vol. 11974, pp. 354–361. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40616-5_30

    Chapter  Google Scholar 

  16. Sabaliauskas, M., Dzemyda, G.: Visual analysis of multidimensional scaling using GeoGebra. In: Dzitac, I., Dzitac, S., Filip, F.G., Kacprzyk, J., Manolescu, M.-J., Oros, H. (eds.) ICCCC 2020. AISC, vol. 1243, pp. 179–187. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-53651-0_15

    Chapter  Google Scholar 

  17. Dzemyda, G., Sabaliauskas, M.: On the computational efficiency of geometric multidimensional scaling. In: 2021 2nd European Symposium on Software Engineering (ESSE 2021), 6-8 November 2021, Larissa, Greece, pp. 1–6. ACM, New York, NY, USA (2021). https://doi.org/10.1145/3501774.3501794

  18. Dzemyda, G., Sabaliauskas, M.: Geometric multidimensional scaling: a new approach for data dimensionality reduction. Appl. Math. Comput. 409, 125,561 (2021). https://doi.org/10.1016/j.amc.2020.125561

  19. Pace, R.K., Barry, R.: Sparse spatial autoregressions. Stat. Probab. Lett. 33(3), 291–297 (1997)

    Article  Google Scholar 

  20. Anaconda software distribution (2021). https://anaconda.com/. Anaconda Documentation, Computer software

Download references

Acknowledgement

This research has received funding from the Research Council of Lithuania (LMTLT), agreement No S-MIP-20-19.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gintautas Dzemyda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dzemyda, G., Medvedev, V., Sabaliauskas, M. (2022). Multi-Core Implementation of Geometric Multidimensional Scaling for Large-Scale Data. In: Rocha, A., Adeli, H., Dzemyda, G., Moreira, F. (eds) Information Systems and Technologies. WorldCIST 2022. Lecture Notes in Networks and Systems, vol 469. Springer, Cham. https://doi.org/10.1007/978-3-031-04819-7_8

Download citation

Publish with us

Policies and ethics