Skip to main content

Mesological Plasticity as a New Model to Study Plant Cognition, Interactive Ecosystems, and Self-Organized Evolutionary Processes

Part of the Evolutionary Biology – New Perspectives on Its Development book series (EBNPD,volume 5)

Abstract

The plasticity of living systems acts at several levels of evolutionary biology including self-organization, phenotypic, phylo-, onto-, and epigenetic processes, while mesology is an approach situated in between ecology and phenomenology. After a description of the specific objects of plasticity and mesology as non-dualist studies of the dynamical coupling between beings and their singular milieu, we will develop some arguments regarding the perception–action loop and the sensory flux of informations crossing the evolution of the living, before focusing on recent discoveries about plant electrome. Using for the first time mesological plasticity as a frame to reanalyze the Uexcküll’s assertions about Umwelt and meaning-making theories of plants, this chapter shows the leading rule of electromic interfaces in the generation of spontaneous low-voltage variations continuously emitted by plants via electrophytographic or EPG recordings. Used as early markers, EPGs are considered in this framework as natural systems of monitoring and discrimination of environmental stimuli that allow the identification of the electromic signature of a plant–stimulus pair in a given milieu. More generally, we will develop the trajections associated with complex behaviors of plants: a bottom-up transdisciplinary view of co-evolutionary or ecosemiotic processes highlighting their specific sensitive fields and cognitive accesses to experience (their otherness) as well as new phenomenologies about interactive ecosystems and phytosemiotics.

Keywords

  • Plant electrome
  • Electrophytography
  • Plasticity concept
  • Interactive ecosystem
  • Mesological plasticity
  • Cognition
  • Phytosemiotics
  • Transdisciplinarity

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    See paragraph 10. Section 10.4.2 related to the epistemological context linked to the discovery of EPGs in plants.

  2. 2.

    Groupe des Plasticiens: see the minutes of the GDP Conferences on the PSA website referenced in 4.

  3. 3.

    Plastir: the Transdisciplinary Review of Human Plasticity is available online on the PSA website (see summary and English abstracts): http://www.plasticites-sciences-arts.org/plastir/

  4. 4.

    PSA Website: http://www.plasticites-sciences-arts.org

  5. 5.

    Please also look at the more recent reference on Leibniz (2004) and More (1969, 1987).

  6. 6.

    From complexion or aggregation (not from complexity), look at the main plasticity complexes described in Table 10.2.

  7. 7.

    Related to the historical works from Harvey (1651), Buffon (1749), Waddington (1942, 1957), Lamarck (1815–1822). See reference list. 

  8. 8.

    The biology of the twentieth century in PhasPhen (2017), CNRS Savoie Thematic School, GDR (University of Lyon 1 CNRS  - LBBE/Biometry and Vegetal Biology Laboratory UMR5558-INRA).

  9. 9.

    Haeckel published the term ökologie in 1866 (Generelle Morphologie, Berlin, Reimer Vol. 2, p. 286). See also the recent publication of Levit GS and Hossfeld (2019) on the subject.

  10. 10.

    Common evolutionary tree until before the divergence of the kingdoms and introduction to a new classification of eukaryotes (Chlorobiont vs Zoobiont).

  11. 11.

    Plants dose their responses according to the danger involved: from leaves rendered inappetent to some pests to poison like tannins for their predators.

  12. 12.

    Wouter Van Hoven, Wildlife Management Centre, Pretoria, South Africa. Famous observation of emission of toxic substances and volatile gas by kudu-killing acacia trees (over-interpreted? as an ability to warn neighboring trees of danger).

  13. 13.

    See Bose refs and Tandon (2019) for a recent review of Bose’s pioneering work.

  14. 14.

    Current research on the root apex confirm Darwin’s predictions and are described as synapse-like properties by Baluška and Mancuso (2013) Baluška et al. (2004, 2005).

  15. 15.

    Philosophers such as Calvo and Keijzer (2011), Coccia (2016), Marder (2013a, b), Hall (2011), Hiernaux (2019), Morizot (2020); anthropologists like Kohn (2013) or Descola (2005, 2019), ecologists like Tassin (2020), ethicists like Pouteau (2014, 2018), forest engineers such as legal approaches about plant law, political status, human–plant relationship, or the planthropocene (Marder 2013a, b, Myers 2017, Haraway 2003, 2008, Tsing 2012) are widely published. See reference list for details.

  16. 16.

    This side-effect was related to the pseudo-scientific experiments of a former CIA agent who interpreted the same kind of bioelectrical traces (weak oscillations recorded with a galvanometer) by lending intentions and feelings to plants, which in the context of the New Age had the echoes that one could expect (mediatized by the worldwide best seller of Tompkins and Bird “The secret life of plants”), but above all had the serious consequence of obscuring electrophysiological researches in this area, made outside of us by two or three other teams in the world like that of Pickard in the USA (1971), for almost three decades!

  17. 17.

    Our EPG technique (Debono 2013a, initially published in 1992) must not to be confused with a recent technique called electropenetrography or EPG measuring the electrical penetration graph to study plant–insect interactions. This technique is also used to study plant virus transmission, host plant selection by insects, and the feeding process of insects in plant tissues. Lucini and Panizzi (2018) describe, for instance, experiments with aphids (phytophagous stink bugs or pentatomids) using a simple device for the extracellular recordings at the level of plant tissues (xylem and phloem) that are connected by inserting an electrode into the soil next to the plant. Such recordings are done as soon as the aphid starts plant penetration and allow the registration of EPG waveforms.

  18. 18.

    Work in progress.

  19. 19.

    According to the biological and post-cognitivist acception of this term.

  20. 20.

    Uexcküll replaces it with Merkwelt in certain writings: see following paragraphs and note 27.

  21. 21.

    von Uexküll (1956, pp. 110–111).

  22. 22.

    von Uexküll (1934, pp. 101–102).

  23. 23.

    von Uexküll (1982, pp. 33–53).

  24. 24.

    Like fungus-cells differentiating themselves from bacteria by interpreting their surroundings and signs like food in terms of meaning-carriers and minimal perception–action loops.

  25. 25.

    See Sect. 10.4.2.

  26. 26.

    Debono (2020a, b) Plant cognition: when science requestions the ecosensibility of the world. IIIrd World Congress of Transdisciplinarity. Planned conference on the topic at Mexico City, Nov. 3–7, 2022. See Nicolescu 1996, 2011 for details regarding the chart and methodology of transdisciplinary. 

  27. 27.

    Uexcküll, who, as we have seen, was little concerned with plants, distinguishes in an interesting way in his work of 1934 on the animal and human worlds the Umwelt of the “higher” animals able to internalize (to replicate, to represent) the external world (Gegenwelt), to perceive it (Merkwelt) finely (landscape, intention, danger...) with the proper notion of animal affect or stimmung, notably developed in comparison to the man by Buytendijk, one of his pupils and to act (Wirkwelt), drawing up there clearly a classic loop perception-action of the Umwelt of the lower animals (molluscs, insects, etc..) whose Merkwelt only perceives the stimuli of the environment, without relating them to a sense or a function.

  28. 28.

    As we have seen in the chapter speaking of the differences between cycle and functional circle: for instance on its understanding of function and the biologization it sometimes grants itself in excess can lead to contradictions such as Uexcküll attributing an Umwelt to unicellulars and not to plants or Umwelt-Umwelten semiotic configurations that are ambiguous to say the least.

  29. 29.

    In another context, Deleuze and Guattari (2004) interestingly compare plant behaviors to the intellective process.

  30. 30.

    What I called protoneural dynamic networks in my paper referenced in 2013a.

  31. 31.

    See also Hoffmeyer (2008a, b).

  32. 32.

    Reference to the last book of the author questioning in a transdisciplinary way plant intelligence, Hermann, Paris, 2020.

References

  • Baluška F, Mancuso S (2009) Plant neurobiology: from sensory biology, via plant communication, to social plant behavior. Cogn Process 10(S1):3–7

    CrossRef  Google Scholar 

  • Baluška F, Mancuso S (2013) Root apex transition zone. Front Plant Sci 4(354):1–15

    Google Scholar 

  • Baluška F, Mancuso S, Volkmann D, Barlow PW (2004) Root apices as plant command centres: the unique ‘brain-like’ status of the root apex transition zone. Biologia (Bratislava) 59:7–19

    Google Scholar 

  • Baluška F, Volkmann D, Menzel D (2005) Plant synapses: actin-based domains for cell-to-cell communication. Trends Plant Sci 10:106–111

    CrossRef  PubMed  CAS  Google Scholar 

  • Baluška F, Mancuso S, Volkmann D (2006) Communication in plants: neuronal aspects of plant life. Springer, New York

    CrossRef  Google Scholar 

  • Barandiaran XE, Di Paolo E, Rohde M, Defining Agency (2009) Individuality normativity, asymmetry, and spatio-temporality in action. Adapt Behav 17-5:367–386

    CrossRef  Google Scholar 

  • Bateson G (1979) Mind and nature: a necessary unity. Bantam Books, New York

    Google Scholar 

  • Benasayag M (2017) La singularité du vivant. Le Pommier, Paris

    Google Scholar 

  • Berque A (2000) Ecoumène - Introduction à l’étude des milieux humains. Belin, Paris

    Google Scholar 

  • Berque A (2014a) Formes empreintes, formes matrices. Asie orientale, Franciscopolis

    Google Scholar 

  • Berque A (2014b) La mésologie, pourquoi et pour quoi faire? Presses University, Paris-Ouest

    CrossRef  Google Scholar 

  • Berque A (2015) Imanishi Kinji. La liberté dans l’évolution. Le vivant comme sujet. (Shutaisei no shinkaron, 1980), trad. by A. Berque, Wildproject

    Google Scholar 

  • Berque A (2016) Plasticité mésologique? In: Philo/ENP Blog (Aug 2016). https://www.editionsdenullepart.info/index.php/ci3/210-augustin-berque/2529-plasticite-mesologique. Accessed 16 November 2020

  • Berque A (2017) Trajection et réalité in Acts of the Colloque de Cerisy, La mésologie, un autre paradigme pour l’anthropocène? http://www.ccic-cerisy.asso.fr/mesologie17.html

  • Berque A (2019, June 6–8) Does nature think evolution? In does nature think ? French-Japanese interdisciplinary dialogues on the “intelligences of nature”, UNESCO and Japanese House of Culture, Paris

    Google Scholar 

  • Berthoz A (2009) La simplexité. Éditions Odile Jacob, Paris

    Google Scholar 

  • Bose JC (1901) Comparative electrophysiology. Longmans, Green & Co, London

    Google Scholar 

  • Bose JC (1902) Response in the living and non-living. In: The nervous mechanism of plants. Longmans, Green & Co, London

    Google Scholar 

  • Bose JC (1926) The nervous mechanism of plants. Longmans, Green & Co, London

    CrossRef  Google Scholar 

  • Brenner ED, Stahlberg R, Mancuso S, Vivanco J, Baluška F, Van Volkenburgh E (2006) Plant neurobiology: an integrated view of plant signaling. Trends Plant Sci 11:413–419

    CrossRef  CAS  PubMed  Google Scholar 

  • Buffon GL (1749) Variété dans l’espèce humaine in Buffon, Œuvres

    Google Scholar 

  • Cabral EF, Pecora PC, Arce AIC, Tech ARB, Costa EJX (2011) The oscillatory bioelectrical signal from plants explained by a simulated electrical model and tested using Lempel-Ziv complexity. Comput Electron Agric 76:1–5

    CrossRef  Google Scholar 

  • Calvo P (2016) The philosophy of plant neurobiology: a manifesto. Synthese 193(5):1323–1343

    CrossRef  Google Scholar 

  • Calvo P, Keijzer FA (2011) Plants: adaptive behavior, root-brains, and minimal cognition. Adapt Behav 19:155–171

    CrossRef  Google Scholar 

  • Canguilhem G (1965) Le vivant et son milieu. La connaissance de la vie. Vrin, Paris

    Google Scholar 

  • Chamovitz D (2017) What a plant knows? A field guide to the senses. Scientific American, Farrar, Straus and Giroux, LLC, New York

    Google Scholar 

  • Chen Y, Zhao DJ, Wang Z, Wang ZYW, Tang G, Huang L (2016) Plant electrical signal classification based on waveform similarity. Algorithms 9(4):70

    CrossRef  Google Scholar 

  • Cheung AY, Qu L-J, Russinova E, Zhao Y, Zipfel C (2020) Update on receptors and signaling. Plant Physiol 182(4):1527–1530

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Clements M (2016) The circle and the maze: two images of ecosemiotics. Sign Syst Stud 44(2):69–93

    CrossRef  Google Scholar 

  • Coccia E (2016) La vie des plantes. Payot & Rivages, Paris

    Google Scholar 

  • Cudworth R (1820) The truth intellectual system of the universe. Printed for R. Priestley, London

    Google Scholar 

  • D’Arcy WT (1917) On growth and form, 1st edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Damasio AR (2021) Feeling and knowing. Making minds conscious. New York, Pantheon Books

    CrossRef  Google Scholar 

  • Darwin C (1864) The various contrivances by which orchids are fertilised by insects, 1st edn. University of Chicago Press, Chicago

    Google Scholar 

  • Darwin C (1881) The power of movements in plants. John Murray, London

    CrossRef  Google Scholar 

  • De Loof A (2016) The cell’s self-generated “electrome”: the biophysical essence of the immaterial dimension of life? Commun Integr Biol 9(5):e1197446

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • De Saussure F (1995) Cours de linguistique générale. Payot, Paris

    Google Scholar 

  • de Toledo GRA, Parise AG, Simmi FZ, Costa AVL, Senko LGS, Debono MW, Souza GM (2019) Plant electrome: the electrical dimension of plant life. Theor Exp Plant Physiol 31:21–46. https://doi.org/10.1007/s40626-019-00145-x

    CrossRef  CAS  Google Scholar 

  • Deacon T (1997) The symbolic species: the co-evolution of language and the brain, 1st edn. Norton, New York

    Google Scholar 

  • Deacon T (2012) Incomplete nature. How mind emerged from matter. W.W. Norton, New York

    Google Scholar 

  • Debono MW (1996) L’Ère des Plasticiens. Aubin, Coll Sciences, Epistemologie

    Google Scholar 

  • Debono MW (2004) From perception to consciousness: an epistemic vision of evolutionary processes. Leonardo J 37(3):243–248. https://doi.org/10.1162/0024094041139364

    CrossRef  Google Scholar 

  • Debono MW (2005) Le concept de Plasticité, un nouveau paradigme épistémologique in DOGMA

    Google Scholar 

  • Debono MW (2010) Le complexe de Plasticité:état des lieux et immersion in PLASTIR n°18, 2010/3. http://www.plasticites-sciences-arts.org/1216-2/

  • Debono MW (2012) États des lieux de la Plasticité. I- Les Interfaces plastiques and II - La Plasticité de l’esprit. Implications Philosophiques, March and May issues

    Google Scholar 

  • Debono MW (2013a) Dynamic protoneural networks in plants: a new approach of spontaneous extracellular potential variations. Plant Sig Behav 8, 6, e24207:1–10. https://doi.org/10.4161/psb.24207

    CrossRef  Google Scholar 

  • Debono MW (2013b) Perceptive levels in plants: a transdisciplinary challenge in living organism’s plasticity. Trans J Eng Sci 4. https://doi.org/10.22545/2013/00044

  • Debono MW (2015) Écriture et plasticité de pensée. Anima Viva Andorra

    Google Scholar 

  • Debono MW (2016) Perception and active plasticity of the world in Mésologie de la perception. Ecole des Hautes Etudes en Sciences Sociales (EHESS), Paris

    Google Scholar 

  • Debono MW (2017) Enjeux épistémiques du concept de plasticité: le monde du vivant. Forme et fonction: morphogenèse, épigénétique, évolution. Ecole des Hautes Etudes en Sciences Sociales (EHESS), Paris

    Google Scholar 

  • Debono MW (2018) Flux d’information sensoriels et stratégies de communication ‘intelligentes’ chez les plantes. In: Augendre M, Llored JP, Nussaume Y (eds) in La mésologie, un autre paradigme pour l’anthropocène? Colloque de Cerisy, Paris

    Google Scholar 

  • Debono MW (2020a) L’intelligence des plantes en question. Hermann, Paris

    Google Scholar 

  • Debono MW (2020b) Plasticité mésologique: un rapport constant d’architectures.Tiers Inclus, June Issue

  • Debono MW (2021a) Electrome and cognition modes in plants: a transdisciplinary approach to the eco-sensitiveness of the world. Transdiscip J Eng Sci 11(2020). https://doi.org/10.22545/2020/00143

  • Debono MW (2021b) Le concept épistémologique de plasticité: évolution et perspectives. DOGMA, 15. https://dogma.lu/edition-15-printemps-2021/

  • Debono MW (2022) “Intelligence” of plants: when science requests the ecosensitivity of the world. In: Third World Congress of Transdisciplinarity, Mexico City 31 Oct–7 Nov 2022

    Google Scholar 

  • Debono MW, Bouteau F (1992) Spontaneous and evoked surface potentials in Kalanchoe tissues. Life Sci Adv Plant Physiol 11:107–117

    Google Scholar 

  • Debono MW, Souza GM (2019) Plants as electromic plastic interfaces: a mesological approach. Prog Biophys Mol Biol 146:123–133. https://doi.org/10.1016/j.pbiomolbio.2019.02.007

    CrossRef  PubMed  Google Scholar 

  • Deely JN (1986) On the notion of phytosemiotics. In: Deely JN, Williams B, Kruse FE (eds) Frontiers in semiotics. Indiana University Press, Bloomington

    Google Scholar 

  • Deely JN (1990) Basics of semiotics. Indiana University Press, Bloomington

    Google Scholar 

  • Deleuze G, Guattari F (2004) A thousand plateaus. Brian Massumi, London, New York

    Google Scholar 

  • Descola P (2005) Par-delà nature et culture. Folio, Gallimard, Paris

    Google Scholar 

  • Descola P (2019) Une écologie des relations. Collection: Les grandes voies de la recherche. CNRS Editions, Paris

    Google Scholar 

  • Driesch H (1892) Entwicklungsmechanische Studien I. Der Werth der beiden ersten Furchungszellen in der Echinodermentwicklung. Experimentelle Erzeugen von Theil- und Doppelbildung, Zeitschrift für wissenschafliche Zoologie, 53:160–178. Translated in Willier and Oppenheimer

    Google Scholar 

  • Eco U (1979) A theory of semiotics. Indiana University Press, Bloomington

    Google Scholar 

  • Falik O, Reides P, Gersani M, Novoplansky A (2005) Root navigation by self-inhibition. Plant Cell Environ 28:562–569

    CrossRef  Google Scholar 

  • Feuerhahn (2009) Du milieu à l’Umlvelt: enjeux d’un changement terminologique. PUF 4–134:419–438

    Google Scholar 

  • Fromm J, Lautner S (2007) Electrical signals and their physiological significance in plants. Plant Cell Environ 30:249–257

    CrossRef  CAS  PubMed  Google Scholar 

  • Gagliano M, Vyazovskiy V, Borbély A, Grimonprez M, Depczynski M (2016) Learning by association in plants. Sci Rep 6:38427. https://doi.org/10.1038/srep38427

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson JJ (1986) The ecological approach to visual perception, 1st edn. Psychology Press, New York

    Google Scholar 

  • Gimenez VMM, Pauletti PM, Sousa Silva AC, Costa EJX (2021) Bioelectrical pattern discrimination of Miconia plants by spectral analysis and machine learning. Theor Exp Plant Physiol. https://doi.org/10.1007/s40626-021-00214-0

  • Goethe GW (1999) La métamorphose des plantes et autres écrits botaniques in Triades (1st German Ed. 1790)

    Google Scholar 

  • Goethe GW (2004) Discours de métaphysique, suivi de Monadologie et autres textes. Gallimard, Paris

    Google Scholar 

  • Greenwood PM and R Parasuraman (2010) Neuronal and cognitive plasticity: a neurocognitive framework for ameliorating cognitive aging. Front Aging Neurosci 2:150. https://doi.org/10.3389/fnagi.2010.00150

  • Haeckel E (1866) Generelle Morphologie der Organismen. Georg Reimer, Berlin

    CrossRef  Google Scholar 

  • Haeckel E (1904) Kunstformen der Natur. Olaf Breidbach, Leipzig and Wien.

    Google Scholar 

  • Hall M (2011) Plants as persons: a philosophical botany. SUNY, Albany

    Google Scholar 

  • Hallé F (2014) Eloge de la plante. Pour une nouvelle biologie. Points, Paris

    Google Scholar 

  • Hamant O, Moulia B (2016) How do plants read their own shapes? New Phytol 212:333–337

    CrossRef  CAS  PubMed  Google Scholar 

  • Haraway D (2003) The companion species manifesto: dogs, people, and significant otherness. Prickly Paradigm Press, Chicago

    Google Scholar 

  • Haraway D (2008) When species meet. Minnesota University Press, Minneapolis

    Google Scholar 

  • Harvey W (1651) Exercitationes de Generatione Animalium. W. Harvey, London

    Google Scholar 

  • Hedrich R, Salvador-Recatala V, Dreyer I (2016) Electrical wiring and long-distance plant communication. Trends Plant Sci 21(5):376–387

    CrossRef  CAS  PubMed  Google Scholar 

  • Hegel (1939–1941) La Phénoménologie de l’esprit, French trans. From Jean Hyppolite, Paris, Aubier

    Google Scholar 

  • Heidegger M (1961) An introduction to metaphysics. Translated by R Manheim, New York, Doubleday

    Google Scholar 

  • Heidegger M (1982) The basic problems of phenomenology. Translated by A Hofstadter, Indiana University Press, Bloomington

    Google Scholar 

  • Heidegger M (1992) Die Grundbegriffe der Metaphysik, Francfort, Klostermann (Transl. D Panis), Les Concepts fondamentaux de la métaphysique, Éditions Gallimard, Paris

    Google Scholar 

  • Hiernaux Q (2019, July 2) History and epistemology of plant behavior: a pluralist view? Synt. Special issue on the biology of behavior: explanatory pluralism across the life sciences, Online publication

    Google Scholar 

  • Hoffmeyer J (1996) Signs of meaning in the universe, vol 120. Indiana University Press, Bloomington, pp 3–4

    Google Scholar 

  • Hoffmeyer J (2008a) Biosemiotics: an examination into the signs of life and the life of signs. University of Scranton Press, Scranton

    Google Scholar 

  • Hoffmeyer J (2008b) A legacy for living systems: Gregory Bateson as a precursor to biosemiotics. Springer, Berlin

    CrossRef  Google Scholar 

  • Johannsen W (1911) The genotype conception of heredity. Am Nat, XLV, pp 129–159

    Google Scholar 

  • Kant E (1781, 2d Ed. 1787) Critique de la raison pure. (Trans. Tremesaygues & Pacaud), PUF Ed., Coll. Bibliothèque de Philosophie contemporaine (1975) 8e Ed, Paris

    Google Scholar 

  • Kant E (1967) Prolégomènes à toute métaphysique future. (Trans. J.Gibelin), Vrin, Paris

    Google Scholar 

  • Kohn E (2013) How forests think: towards an anthropology going beyond the human. University of California Press, Berkeley

    CrossRef  Google Scholar 

  • Krampen M (1981) Phytosemiotics. Semiotica 36:187–209

    CrossRef  Google Scholar 

  • Krampen M (1986) Phytosemiotics. In: Sebeok TA (ed) Encyclopedic dictionary of semiotics. Mouton de Gruyter, Berlin

    Google Scholar 

  • Krampen M (1992) Phytosemiotics revisited. In: Sebeok TA, Umiker-Sebeok J (eds) Biosemiotics: the semiotic web 1991. Mouton de Gruyter, Berlin

    Google Scholar 

  • Krampen M (1997) Models of semiosis. In: Posner R, Robering K, Sebeok TA (eds) Semiotics: a handbook on the sign-theoretic foundations of nature and culture, 1. Walter de Gruyter, Berlin

    Google Scholar 

  • Kull K (1998) Semiotic ecology: different natures in the semiosphere. Sig Syst Stud 26:344–371

    CrossRef  Google Scholar 

  • Kull K (2000) An introduction to phytosemiotics: semiotic botany and vegetative sign systems. Sig Syst Stud 28:326–350

    CrossRef  Google Scholar 

  • Kull K (2001) Jakob von Uexküll: a paradigm for biology and semiotics. Semiotica 134:1–4

    CrossRef  Google Scholar 

  • Kull K (2020) Jakob von Uexküll and the study of primary meaning-making. In: Michelini F, Köchy K (eds) Jakob von Uexküll and philosophy: life, environments, anthropology. Routledge, London

    Google Scholar 

  • Lamarck JB (1815–1822) Histoire naturelle des Animaux Sans vertèbres (Sept tomes)

    Google Scholar 

  • Leibniz GW (1646–1716) Considérations sur les principes de vie et sur les natures plastiques, T.II, Part I. Dutens, Paris

    Google Scholar 

  • Leibniz GW (2004) Discours de métaphysique, suivi de Monadologie et Autres textes. Gallimard, Mesnil-sur-l’Estrée

    Google Scholar 

  • Levit GS, Hossfeld U (2019) Ernst Haeckel in the history of biology. Curr Biol 29(24):R1272–R1280

    CrossRef  CAS  Google Scholar 

  • Lucini T, Panizzi AR (2018) Electropenetrography (EPG): a breakthrough tool unveiling stink bug (Pentatomidae) feeding on plants. Neotrop Entomol 47:6–18

    CrossRef  CAS  PubMed  Google Scholar 

  • Lupasco S (1970) Les trois Matières. R. Julliard, Paris

    Google Scholar 

  • Lupasco S (1986) L’homme et ses trois éthiques. Eds du Rocher, Paris

    Google Scholar 

  • Malabou C (1996) L’avenir de Hegel - plasticité, temporalité, dialectique. Vrin, Paris

    Google Scholar 

  • Mancuso S, Viola A (2013) Brillant green: the surprising history and science of plant intelligence. Island Press, Washington

    Google Scholar 

  • Marder M (2013a) Plant intelligence and attention. Plant Signal Behav 8:e23902

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Marder M (2013b) Plant-thinking: a philosophy of vegetal life. Columbia University Press, New York

    Google Scholar 

  • Margulis L (1998) Symbiotic planet: a new look at evolution. Basic Books, New York

    Google Scholar 

  • Masi E, Ciszak M, Stefano G, Renna L, Azzarello E, Pandolfi C et al (2009) Spatiotemporal dynamics of the electrical network activity in the root apex. Proc Natl Acad Sci U S A 06:4048–4053

    CrossRef  Google Scholar 

  • Maturana HR, Varela FJ (1980) Autopoiesis and cognition. D. Reidel Publishing, Dordrecht

    CrossRef  Google Scholar 

  • More H (1969) Philosophical writings of Henry More. AMS Press, New York

    Google Scholar 

  • More H (1987) The immortality of the soul II, XIV § 8. M. Nijhoff, Dordrecht

    Google Scholar 

  • Morizot B (2020) Manières d’être vivant. Actes Sud, Paris

    Google Scholar 

  • Moulia B, Fournier M (2009) The power and control of gravitropic movements in plants: a biomechanical and systems biology view. J Exp Bot 60(2):461–486

    CrossRef  CAS  PubMed  Google Scholar 

  • Myers N (2017) From the anthropocene to the planthroposcene: designing gardens for plant/people involution. Hist Anthropol 28(30):297–301

    CrossRef  Google Scholar 

  • Nicolescu B (1996) La Transdiciplinarité. Editions du Rocher, Paris

    Google Scholar 

  • Nicolescu B (2011) Methodology of transdisciplinarity, levels of reality, logic of the included middle and complexity. In: Ertas A (ed) Transdisciplinarity bridging natural science, social science, humanities and engineering. Atlas Books

    Google Scholar 

  • Nietzsche FW (1878) Human, All Too Human: a book for free spirits. (Trans. by M Faber and S Lehmann, 1984), University of Nebraska Press, Lincoln, NE

    Google Scholar 

  • Nöth W (1990) Handbook of semiotics. Indiana University Press, Bloomington

    CrossRef  Google Scholar 

  • Nöth W (1994) Opposition at the roots of semiosis. In: Nöth W (ed) Origins of semiosis: sign evolution in nature and culture. Mouton de Gruyter, Berlin

    CrossRef  Google Scholar 

  • Nöth W (1998) Ecosemiotics. Sig Syst Stud 26:332–343

    CrossRef  Google Scholar 

  • Paillard J (1976) Réflexions sur l’usage du concept de plasticité en neurobiologie. J Psychol Norm Pathol 1:33–47

    Google Scholar 

  • Parise AG, Gagliano M, Souza GM (2020) Extended cognition in plants: is it possible? Plant Signal Behav 15(2):1710661

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Parise AG, Reissig GN, Basso LF, Senko Schultz LG, Oliveira C, Aguilera de Toledo GR, Ferreira AS, Souza GM (2021) Detection of different hosts from a distance alters the behaviour and bioelectrical activity of Cuscuta racemose. Front Plant Sci. https://doi.org/10.3389/fpls.2021.594195

  • Pereira DR, Papa JP, Saraiva GFR, Souza GM (2018) Automatic classification of plant electrophysiological responses to environmental stimuli using machine learning and interval arithmetic. Comput Electron Agric 145:35–42. https://doi.org/10.1016/j.compag.2017.12.024

    CrossRef  Google Scholar 

  • Pic de la Mirandole P (1486) Discours de la dignité de l'homme in Œuvres philosophiques (Trans. O. Boulnois, G.Tognon), PUF Ed., Coll. “Épiméthée” (1993) & De la dignité de l'homme, Oratio de hominis dignitate, (Trans. by Y. Hersant, 1993). L'Éclat, “Philosophie imaginaire”, Paris

    Google Scholar 

  • Pickard BG (1971) Spontaneous electrical activity in shoots of Ipomea, Pisum and xanthium. Planta 102:91–113

    CrossRef  CAS  PubMed  Google Scholar 

  • Pierce CS (1979) Théorie et pratique du signe. Payot, Paris

    Google Scholar 

  • Pigliucci M (2001) Phenotypic plasticity: beyond nature and nurture in Baltimore. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Plessner H (2019) Helmuth Plessner’s levels of organic life and the human: an introduction to philosophical anthropology (trans Millay Hyatt, Int. By J.M. Bernstein). Fordham University Press

    CrossRef  Google Scholar 

  • Pouteau S (2014) Beyond « second animals »: making sense of plant ethics. J Agric Environ Ethics 27(1):1–25

    CrossRef  Google Scholar 

  • Pouteau S (2018) Plants as open beings: from aesthetics to plant-human ethics. In: Kalhoff A, Di Paola M, Schörgenhumer M (eds) Plant ethics: concepts and applications. Routledge, New York

    Google Scholar 

  • Ratzel F (1899) Antrhropogeographie. Erster Teil: Grundzüge der anwendug der erdkunde auf die geschichte. J. Engelhorn, Stuttgart

    Google Scholar 

  • Real LA (1993) Toward a cognitive ecology. Trends Ecol Evol 8(11):413–417

    CrossRef  CAS  PubMed  Google Scholar 

  • Reissig GN, de Carvalho FON, de Padilha OR, Posso DA, Parise AG, Nava DE, Souza GM (2021) Fruit herbivory alters plant electrome: evidence for fruit-shoot long-distance electrical signaling in tomato plants. Front Sustain Food Syst 5:657401. https://doi.org/10.3389/fsufs.2021.657401

    CrossRef  Google Scholar 

  • Sachs von J (1862) Histoire de la botanique du XVIe siècle à 1860. BNF, Paris

    Google Scholar 

  • Sachs von J (1874) Traité de botanique. BNF, Paris

    Google Scholar 

  • Saraiva GRF, Ferreira AS, Souza GM (2017) Osmotic stress decreases complexity underlying the electrophysiological dynamic in soybean. Plant Biol (Stuttg) 19(5):702–708. https://doi.org/10.1111/plb.12576

    CrossRef  CAS  Google Scholar 

  • Sebeok TA (1994) Signs: an introduction to semiotics. University of Toronto Press, Toronto

    Google Scholar 

  • Sebeok TA (1997) The evolution of semiosis. In: Posner R, Robering K, Sebeok TA (eds) Semiotics: a handbook on the sign-theoretic foundations of nature and culture, 1. Walter de Gruyter, Berlin

    Google Scholar 

  • Selosse MA (2012) Les végétaux existent-ils encore? Pour la Science 77:8–13

    Google Scholar 

  • Sharov AA, Vehkavaara T (2015) Protosemiosis: agency with reduced representation capacity. Biosemiotics 8:103–123

    CrossRef  PubMed  Google Scholar 

  • Simard SW, Beiler KJ, Bingham MA, Deslippe JR, Philip LJ, Teste FP (2012) Mycorrhizal networks: mechanisms, ecology and modeling. Fungal Biol Rev 26(1):39–60

    CrossRef  Google Scholar 

  • Simmi FZ, Dallagnol LJ, Ferreira AS, Pereira DR, Souza GM (2020) Electrome alterations in a plant-pathogen system: toward early diagnosis. Bioelectrochemistry 133:107403. https://doi.org/10.1016/j.bioelechem.2020.107493

    CrossRef  CAS  Google Scholar 

  • Simondon G (2006) Cours sur la perception: 1964–1965. Eds de la Transparence, Chatou

    Google Scholar 

  • Souza GM, Ferreira AS, Saraiva GFR, Toledo GRA (2017) Plant “electrome” can be pushed toward a self-organized critical state by external cues: evidences from a study with soybean seedlings subject to different environmental conditions. Plant Signal Behav 12:e1290040. https://doi.org/10.1080/15592324.2017.1290040

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Souza GM, Toledo GRA, Saraiva GFR (2018) Towards a systemic view for plant learning: an (eco)physiological perspective. In: Baluska F, Gagliano M, Witzany G (eds) Memory and learning in plants. Springer, New York. https://doi.org/10.1007/978-3-319-75596-0_9

    CrossRef  Google Scholar 

  • Tandon PN (2019) Jagdish Chandra Bose and plant neurobiology. Indian J Med Res 149(5):593–599

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Tassin J (2020) Pour une écologie sensible. Odile Jacob, Paris

    Google Scholar 

  • Thellier M (2017) Plant memory vs. animal and human memory in plant responses to environmental stimuli. Springer, Dordrecht

    Google Scholar 

  • Thom R (1966) Une théorie dynamique de la morphogenèse. In: Waddington CH (ed) Toward a theoretical biology. University of Edinburgh Press, Edinburgh

    Google Scholar 

  • Thom R (1977) Stabilité structurelle et morphogenèse. InterEditions, Paris

    Google Scholar 

  • Thom R (1988) Esquisse d'une sémiophysique. InterEditions, Paris

    Google Scholar 

  • Tian W, Wang C, Gao Q et al (2020) Calcium spikes, waves and oscillations in plant development and biotic interactions. Nat Plants 6:50–759

    CrossRef  CAS  Google Scholar 

  • Toyota M, Spencer D, Sawai-Toyota S, Jiaqi W, Zhang T, Koo AJ et al (2018) Glutamate triggers long-distance, calcium-based plant defense signaling. Science 361:1112–1115. https://doi.org/10.1126/science.aat7744

    CrossRef  CAS  PubMed  Google Scholar 

  • Trewavas A (2003) Aspects of plant intelligence. Ann Bot 92:1–20

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Trewavas A (2005) Green plants as intelligent organisms. Trends Plant Sci 10:413–419

    CrossRef  CAS  PubMed  Google Scholar 

  • Tsing A (2012) Unruly edges: mushrooms as companion species. Environ Human 1:141–154

    CrossRef  Google Scholar 

  • Turvey MT (1996) Dynamic touch. Am Psychol 51(11):1134–1152

    CrossRef  CAS  PubMed  Google Scholar 

  • Varela FJ (1983) Autonomie et connaissance. Le Seuil, Paris

    Google Scholar 

  • Vignola G (2017) Écocritique, écosémiotique et représentation du monde en literature. Cygne noir N°5, http://www.revuecygnenoir.org/numero/article/vignola-ecocritique-ecosemiotique. Accessed 23 Sep 2019

  • Volkov AG (2012) Plant electrophysiology. Signaling and responses. Springer, Berlin

    CrossRef  Google Scholar 

  • Volkov AG (2014) Plant biosensor and method. US Patent 8:893

    Google Scholar 

  • Volkov AG, Carell H, Baldwin A, Markin VS (2010) Electrical memory in Venus flytrap. Plant Cell Environ 33:163–173

    CrossRef  PubMed  Google Scholar 

  • Volkov AG, Toole S, WaMaina M (2019) Electrical signal transmission in the plant-wide web. Bioelectrochemistry 129:70–78

    CrossRef  CAS  PubMed  Google Scholar 

  • von Uexcküll J (1934) Mondes animaux et monde humain followed by La théorie de la signification. French translations from German: Denoël (1965), Pocket, Coll. Agora (2004) and with the title Milieu animal et milieu humain, Payot and Rivages (2010), Paris

    Google Scholar 

  • von Uexcküll J (1956) Streifzüge durch die Umwelten von Tieren und Menschen, ein Bilderbuch unsichtbarer Welten, Bedeutungslehre. Rowohlt Verlag, Hamburg

    Google Scholar 

  • von Uexcküll J (1982) The theory of meaning in semiotica 42:1, The Hague: Mouton. See also the English translation (2010): A theory of meaning in von Uexküll, a foray into the worlds of animals and humans, with a theory of meaning, English translation JD O’Neil, University of Minnesota Press

    Google Scholar 

  • von Uexcküll T (1986) Medecine and semiotics. Semiotica 61(3/4):201–217

    Google Scholar 

  • von Uexcküll T, Wesiak W (1997) Theorie der Humanmedizin. Grundlagen ärztlichen Denkens und Handelns. Verlag, Wien

    Google Scholar 

  • Waddington CH (1942) The epigenotype. Endeavour 1:18–20

    Google Scholar 

  • Waddington CH (1957) The strategy of genes. Allen & Unwin, London

    Google Scholar 

  • Weiss P (1941) Self-differentiation of the basic patterns of coordination. Comp Psychol Monographs 17(4):1–96

    Google Scholar 

  • Weizsäcker von CF (1985) Aufbau der Physik. Carl Hanser Verlag, München/Wien Vorwort, p 17

    Google Scholar 

  • West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press, New York

    CrossRef  Google Scholar 

  • Wildon DC, Thain JF, Minchin PEH, Gubb IR, Reilly AJ, Skipper HM, O’Donnell PJ, Bowles DJ (1992) Electric signaling and systemic proteinase inhibitor induction in the wounded plant. Nature 360:62–65

    CrossRef  CAS  Google Scholar 

  • Wolffe A (2000) Chromatin: structure and function. Academic Press, London

    Google Scholar 

  • Woltereck R (1909) Weitere experimentelle Untersuchungen über Artveränderung, speziell über das Wesen quantitativer Artunterschiede bei Daphniden. Verhandlungen Dtsch Zool Ges 19:110–172

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc-Williams Debono .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Debono, MW. (2022). Mesological Plasticity as a New Model to Study Plant Cognition, Interactive Ecosystems, and Self-Organized Evolutionary Processes. In: Dambricourt Malassé, A. (eds) Self-Organization as a New Paradigm in Evolutionary Biology. Evolutionary Biology – New Perspectives on Its Development, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-031-04783-1_10

Download citation