Skip to main content

Towards a Quality Model for Cloud-native Applications

  • 187 Accesses

Part of the Lecture Notes in Computer Science book series (LNCS,volume 13226)

Abstract

Cloud-native is a recent paradigm for web-based service-oriented applications. Because it covers a wide range of concepts and lacks a commonly accepted definition, evaluating software architectures according to it is difficult. Therefore, a quality model is presented, aligned with the Quamoco meta model and based on both practitioner books and scientific literature. It focuses on the design time and considers multiple quality attributes in relation. This initial quality model together with an evaluation of already existing measures is intended as a basis for approaches aiming to evaluate cloud-native application architectures.

Keywords

  • Quality Model
  • Cloud-native
  • Quality Attributes
  • Service-oriented

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-031-04718-3_7
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-031-04718-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.

Notes

  1. 1.

    https://github.com/r0light/cna-quality-model/tree/0.1.

  2. 2.

    https://r0light.github.io/cna-quality-model/.

References

  1. Adkins, H., Beyer, B., Blankinship, P., Lewandowski, P., Oprea, A., Stubblefield, A.: Building Secure and Reliable Systems. O’Reilly, Sebastopol (2020)

    Google Scholar 

  2. Alonso, J., Stefanidis, K., et al.: Decide: an extended DevOps framework for multi-cloud applications. In: 3rd ICCBDC, pp. 43–48 (2019)

    Google Scholar 

  3. Apel, S., Hertrampf, F., Späthe, S.: Towards a metrics-based software quality rating for a microservice architecture. In: Lüke, K.-H., Eichler, G., Erfurth, C., Fahrnberger, G. (eds.) I4CS 2019. CCIS, vol. 1041, pp. 205–220. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22482-0_15

    CrossRef  Google Scholar 

  4. Arundel, J., Domingus, J.: Cloud Native DevOps with Kubernetes. O’Reilly, Sebastopol (2019)

    Google Scholar 

  5. Bastani, K., Long, J.: Cloud Native Java. O’Reilly, Sebastopol (2017)

    Google Scholar 

  6. Bogner, J., Wagner, S., Zimmermann, A.: Automatically measuring the maintainability of service-and microservice-based systems: a literature review. In: 27th IWSM, pp. 107–115. ACM (2017)

    Google Scholar 

  7. Cardarelli, M., Iovino, L., Francesco, P.D., Salle, A.D., Malavolta, I., Lago, P.: An extensible data-driven approach for evaluating the quality of microservice architectures. In: 34th ACM/SIGAPP Symposium on Applied Computing, ACM Press (2019)

    Google Scholar 

  8. CNCF: CNCF Cloud Native Definition v1.0. (2018). https://github.com/cncf/toc/blob/master/DEFINITION.md

  9. CNCF: CNCF Survey 2020 (2020). https://www.cncf.io/wp-content/uploads/2020/12/CNCF_Survey_Report_2020.pdf

  10. Davis, C.: Cloud Native Patterns. Manning, Shelter Island (2019)

    Google Scholar 

  11. Engel, T., Langermeier, M., Bauer, B., Hofmann, A.: Evaluation of microservice architectures: a metric and tool-based approach. In: Mendling, J., Mouratidis, H. (eds.) CAiSE 2018. LNBIP, vol. 317, pp. 74–89. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92901-9_8

    CrossRef  Google Scholar 

  12. Fehling, C., Leymann, F., Retter, R., Schupeck, W., Arbitter, P.: Cloud Computing Patterns. Springer, Vienna (2014). https://doi.org/10.1007/978-3-7091-1568-8

    CrossRef  Google Scholar 

  13. Gannon, D., Barga, R., Sundaresan, N.: Cloud-native applications. IEEE Cloud Comput. 4(5), 16–21 (2017)

    CrossRef  Google Scholar 

  14. Garrison, J., Nova, K.: Cloud Native Infrastructure. O’Reilly, Sebastopol (2017)

    Google Scholar 

  15. Goniwada, S.R.: Cloud Native Architecture and Design Patterns. In: Cloud Native Architecture and Design, pp. 127–187. Apress, Berkeley (2022). https://doi.org/10.1007/978-1-4842-7226-8_4

    CrossRef  Google Scholar 

  16. Guerron, X., Abrahao, S., Insfran, E., Fernandez-Diego, M., Gonzalez-Ladron-De-Guevara, F.: A taxonomy of quality metrics for cloud services. IEEE Access 8, 131461–131498 (2020)

    Google Scholar 

  17. Hirzalla, M., Cleland-Huang, J., Arsanjani, A.: A metrics suite for evaluating flexibility and complexity in service oriented architectures. In: Feuerlicht, G., Lamersdorf, W. (eds.) ICSOC 2008. LNCS, vol. 5472, pp. 41–52. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01247-1_5

  18. Ibryam, B., Huß, R.: Kubernetes Patterns. O’Reilly, Sebastopol (2020)

    Google Scholar 

  19. Indrasiri, K., Suhothayan, S.: Design Patterns for Cloud Native Applications. O’Reilly, Sebastopol (2021)

    Google Scholar 

  20. ISO/IEC: ISO/IEC 25000 Systems and software engineering - Systems and software Quality Requirements and Evaluation (SQuaRE) (2014). https://www.iso.org/standard/64764.html

  21. Kratzke, N., Quint, P.C.: Understanding cloud-native applications after 10 years of cloud computing - a systematic mapping study. JSS 126, 1–16 (2017)

    Google Scholar 

  22. Lehmann, M., Sandnes, F.E.: A framework for evaluating continuous microservice delivery strategies. In: 2nd ICC, ACM (2017)

    Google Scholar 

  23. Li, S., et al.: Understanding and addressing quality attributes of microservices architecture: a systematic literature review. Inf. Softw. Technol. 131, 106449 (2021)

    Google Scholar 

  24. Ntentos, E., Zdun, U., Plakidas, K., Meixner, S., Geiger, S.: Metrics for assessing architecture conformance to microservice architecture patterns and practices. In: Kafeza, E., Benatallah, B., Martinelli, F., Hacid, H., Bouguettaya, A., Motahari, H. (eds.) ICSOC 2020. LNCS, vol. 12571, pp. 580–596. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65310-1_42

  25. Ovaska, E., Evesti, A., Henttonen, K., Palviainen, M., Aho, P.: Knowledge based quality-driven architecture design and evaluation. IST 52(6), 577–601 (2010)

    Google Scholar 

  26. Pahl, C., Jamshidi, P., Zimmermann, O.: Architectural principles for cloud software. ACM Trans. Internet Technol. 18(2), 1–23 (2018)

    Google Scholar 

  27. RedHat: Understanding cloud-native applications (2018). https://www.redhat.com/en/topics/cloud-native-apps

  28. Reznik, P., Dobson, J., Gienow, M.: Cloud Native Transformation. O’Reilly, Sebastopol (2019)

    Google Scholar 

  29. Richardson, C.: Microservices Patterns. 1 edn. Manning, Shelter Island (2019)

    Google Scholar 

  30. Ruecker, B.: Practical Process Automation. O’Reilly, Sebastopol (2021)

    Google Scholar 

  31. Scholl, B., Swanson, T., Jausovec, P.: Cloud Native. O’Reilly, Sebastopol (2019)

    Google Scholar 

  32. Toffetti, G., Brunner, S., Blöchlinger, M., Spillner, J., Bohnert, T.M.: Self-managing cloud-native applications: design, implementation, and experience. Future Gener. Comput. Syst. 72, 165–179 (2017)

    Google Scholar 

  33. VMwareTanzu(Pivotal): Cloud-Native Applications: Ship Faster, Reduce Risk, Grow Your Business (2020). https://tanzu.vmware.com/de/cloud-native

  34. Wagner, S., et al.: Operationalised product quality models and assessment: the Quamoco approach. IST 62, 101–123 (2015)

    Google Scholar 

  35. Wagner, S., et al.: The quamoco quality meta-model. techreport TUM-I128, Technische Universität München, Institut für Informatik (2012)

    Google Scholar 

  36. Wurster, M., Breitenbücher, U., Brogi, A., Leymann, F., Soldani, J.: Cloud-native Deploy-ability: an analysis of required features of deployment technologies to deploy arbitrary cloud-native applications. In: 10th CLOSER. Scitepress (2020)

    Google Scholar 

  37. Zdun, U., Navarro, E., Leymann, F.: Ensuring and assessing architecture conformance to microservice decomposition patterns. In: Maximilien, M., Vallecillo, A., Wang, J., Oriol, M. (eds.) ICSOC 2017. LNCS, vol. 10601, pp. 411–429. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69035-3_29

  38. Zimmermann, O.: Metrics for architectural synthesis and evaluation - requirements and compilation by viewpoint. an industrial experience report. In: IEEE/ACM 2nd International Workshop on Software Architecture and Metrics, IEEE (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin Lichtenthäler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Lichtenthäler, R., Wirtz, G. (2022). Towards a Quality Model for Cloud-native Applications. In: Montesi, F., Papadopoulos, G.A., Zimmermann, W. (eds) Service-Oriented and Cloud Computing. ESOCC 2022. Lecture Notes in Computer Science, vol 13226. Springer, Cham. https://doi.org/10.1007/978-3-031-04718-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-04718-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-04717-6

  • Online ISBN: 978-3-031-04718-3

  • eBook Packages: Computer ScienceComputer Science (R0)