Skip to main content

Factors That Influence the Hydrological Process: A Climate and Land Use/Land Cover Perspective

  • Chapter
  • First Online:
Climate Change Impact on Groundwater Resources

Abstract

The hydrological cycle (HyC) is affected by several factors, but climate and land use/land cover (LU/LC) are the most influential ones. This chapter has tried to show some satellite-based land use/land cover feature extraction methods that are useful for climate studies. Several literature works have claimed that climate is more influential than land use. Land use has an impact on several components of the hydrological cycle. This chapter provides a perspective on climate change, urbanization, land degradation, and other disasters and also on the usage of land use/land cover features in the study of the hydrological cycle. The anomaly in solar radiation due to greenhouse gas (GHG) emissions and its impact on climatic factors and the hydrological cycle with its implication in food production is briefed. Some of the global measurement missions for precipitation and land surface temperature (LST) are also discussed. To investigate the influence of land use/land cover on the hydrological cycle, identification of a particular class or all land use classes of a particular region may be essential. This chapter uses the synoptic view of satellite data and attempts to exercise certain indices to identify certain classes and classification algorithms to classify land use classes. This work has also experimented with certain classification algorithms to delineate some land use/land cover features and has also pointed out some limitations in the application of indices. This chapter discusses the factors that influence the hydrological cycle and highlights the usage of satellite data in regional studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • L.H.U.W. Abeydeera, J.W. Mesthrige, T.I. Samarasinghalage, Global research on carbon emissions: A scientometric review. Sustainability (Switzerland) 11(14), 1–25 (2019). https://doi.org/10.3390/su11143972

    Article  Google Scholar 

  • M. Almazroui, Calibration of TRMM rainfall climatology over Saudi Arabia during 1998-2009. Atmos. Res. 99(3–4), 400–414 (2011). https://doi.org/10.1016/j.atmosres.2010.11.006

    Article  Google Scholar 

  • T.R. Anderson, E. Hawkins, P.D. Jones, CO2, the greenhouse effect and global warming: From the pioneering work of Arrhenius and Callendar to today’s Earth System Models. Endeavour 40(3), 178–187 (2016). https://doi.org/10.1016/j.endeavour.2016.07.002

    Article  PubMed  Google Scholar 

  • B. Bates, Z. W. Kundzewicz, S. Wu, J. Palutikof, Climate change and water. Technical paper of the intergovernmental panel on climate change IPCC Secretariat, Geneva, Vol. 71 (2008). https://doi.org/10.1029/90EO00112

  • W. Bewket, G. Sterk, Dynamics in land cover and its effect on stream flow in the Chemoga watershed, Blue Nile basin, Ethiopia. Hydrol. Process. 19(2), 445–458 (2005). https://doi.org/10.1002/hyp.5542

    Article  ADS  Google Scholar 

  • S.S. Bhatti, N.K. Tripathi, Built-up area extraction using Landsat 8 OLI imagery. GIsci Remote Sens 51(4), 445–467 (2014). https://doi.org/10.1080/15481603.2014.939539

    Article  Google Scholar 

  • F. Bichai, P.W.M.H. Smeets, Integrating water quality into urban water management and planning while addressing the challenge of water security. Glob. Issues Water Policy 15, 135–154 (2015). https://doi.org/10.1007/978-94-017-9801-3_6

    Article  Google Scholar 

  • J.A. Biederman, A.J. Somor, A.A. Harpold, E.D. Gutmann, D.D. Breshears, P.A. Troch, et al., Recent tree die-off has little effect on streamflow in contrast to expected increases from historical studies. Water Resour. Res. 51(12), 9775–9789 (2015). https://doi.org/10.1002/2015WR017401

    Article  ADS  Google Scholar 

  • P. Borrelli, D.A. Robinson, L.R. Fleischer, E. Lugato, C. Ballabio, C. Alewell, et al., An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 8(1) (2017). https://doi.org/10.1038/s41467-017-02142-7

  • N. Ciobotaru, Factors controlling hydrological processes and characteristics in the Susita Catchment Area - Romania. National Institute for Research and Development, (January 2018)

    Google Scholar 

  • D.R. DeWalle, B.R. Swistock, T.E. Johnson, K.J. McGuire, DeWalle_et_al-2000-Water_Resources_Research. Water Resour. Res. 36(9), 2655–2664 (2000)

    Article  ADS  Google Scholar 

  • L. Ding, K.-l. Chen, S.-g. Cheng, X. Wang, Water ecological carrying capacity of urban lakes in the context of rapid urbanization: A case study of East Lake in Wuhan. Phys. Chem. Earth 89–90, 104–113 (2015). https://doi.org/10.1016/j.pce.2015.08.004

    Article  ADS  Google Scholar 

  • G.S. Dwarakish, B.P. Ganasri, Impact of land use change on hydrological systems: A review of current modeling approaches. Cogent Geosci. 1(1), 1115691 (2015). https://doi.org/10.1080/23312041.2015.1115691

    Article  Google Scholar 

  • B.A. Ebel, F.K. Rengers, G.E. Tucker, Observed and simulated hydrologic response for a first-order catchment during extreme rainfall 3 years after wildfire disturbance. Water Resour. Res. 52(12), 9367–9389 (2016). https://doi.org/10.1002/2016WR019110

    Article  ADS  Google Scholar 

  • S. Edwards (2007). Role of Organic Agriculture in Preventing and Reversing Land Degradation. In: Sivakumar, M.V.K., Ndiang’ui, N. (eds) Climate and Land Degradation. Environmental Science and Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72438-4_29

  • R.C. Estoque, Y. Murayama, Monitoring surface urban heat island formation in a tropical mountain city using landsat data (1987 - 2015). ISPRS J. Photogramm. Remote Sens. 133, 18–29 (2017)

    Article  ADS  Google Scholar 

  • Y. Farhan, O. Anaba, A. Salim, Morphometric analysis and flash floods assessment for drainage basins of the Ras En Naqb Area, South Jordan using GIS. J. Geosci. Environ. Protect. 04(06), 9–33 (2016). https://doi.org/10.4236/gep.2016.46002

    Article  Google Scholar 

  • Y. Farhan, A. Anbar, N. Al-Shaikh, R. Mousa, Prioritization of semi-arid agricultural watershed using morphometric and principal component analysis, remote sensing, and GIS techniques, the Zerqa River Watershed, Northern Jordan. Agric. Sci. 08(01), 113–148 (2017). https://doi.org/10.4236/as.2017.81009

    Article  Google Scholar 

  • M.K. Firozjaei, A. Sedighi, M. Kiavarz, S. Qureshi, D. Haase, S.K. Alavipanah, Automated built-up extraction index: A new technique for mapping surface built-up areas using LANDSAT 8 OLI imagery. Remote Sens. 11(1966), 1–20 (2019). https://doi.org/10.3390/rs11171966

    Article  Google Scholar 

  • P.M. Groffman, D.J. Bain, L.E. Band, K.T. Belt, G.S. Brush, J.M. Grove, et al., Down by the riverside: Urban riparian ecology. Front. Ecol. Environ. 1(6), 315 (2003). https://doi.org/10.2307/3868092

    Article  Google Scholar 

  • N. Gupta, A. Mathew, S. Khandelwal, Analysis of cooling effect of water bodies on land surface temperature in nearby region: A case study of Ahmedabad and Chandigarh cities in India. Egypt. J. Remote Sens. Space. Sci. 22(1), 81–93 (2019). https://doi.org/10.1016/j.ejrs.2018.03.007

    Article  Google Scholar 

  • G.J. Huffman, R.F. Adler, D.T. Bolvin, G. Gu, E.J. Nelkin, K.P. Bowman, et al., The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 8(1), 38–55 (2007). https://doi.org/10.1175/JHM560.1

    Article  ADS  Google Scholar 

  • IPCC, Summary for policy makers, in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, ed. by H. O. Portner, D. C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintebeck, M. Nicolai, A. Okem, J. Petzold, B. Rama, N. Weyer, (2019) https://report.ipcc.ch/srocc/pdf/SROCC_SPM_Approved.pdf

    Google Scholar 

  • S. Issaka, M.A. Ashraf, Impact of soil erosion and degradation on water quality: A review. Geol. Ecol. Landsc. 1(1), 1–11 (2017). https://doi.org/10.1080/24749508.2017.1301053

    Article  Google Scholar 

  • D. Jaskierniak, G. Kuczera, R. Benyon, Predicting long-term streamflow variability in moist eucalypt forests using forest growth models and a sapwood area index. Water Resour. Res. 52(4), 3052–3067 (2016). https://doi.org/10.1002/2015WR018029

    Article  ADS  Google Scholar 

  • JMP, Progress on household drinking water, sanitation and hygiene 2000–2017 Special focus on inequalities New York. WHO/UNICEF Joint Monitoring Programme for Water Supply and Sanitation (2019)

    Google Scholar 

  • B.A. Johnson, L. Ma, Image segmentation and object-based image analysis for environmental monitoring: Recent areas of interest, researchers’ views on the future priorities. Remote Sens. 12(1772), 1–9 (2020)

    Google Scholar 

  • C. Kefi, A. Mabrouk, N. Halouani, H. Ismail, Comparison of pixel-based and object-oriented classification methods for extracting built-up areas in coastal zone. Environ. Sci. Eng. 8(August), 2151–2155 (2021). https://doi.org/10.1007/978-3-030-51210-1_336

    Article  Google Scholar 

  • J.F. Knowles, L.R. Lestak, N.P. Molotch, On the use of a snow aridity index to predict remotely sensed forest productivity in the presence of bark beetle disturbance. Water Resour. Res. 53(6), 4891–4906 (2017). https://doi.org/10.1002/2016WR019887

    Article  ADS  Google Scholar 

  • B.K. Kogo, L. Kumar, R. Koech, Impact of land use/cover changes on soil erosion in western Kenya. Sustainability (Switzerland) 12(22), 1–17 (2020). https://doi.org/10.3390/su12229740

    Article  CAS  Google Scholar 

  • C.P. Konrad, D.B. Booth, Hydrologic changes in urban streams and their ecological significance. Am. Fish. Soc. Symp. 2005(47), 157–177 (2005)

    Google Scholar 

  • M. Lasagna, D. Ducci, M. Sellerino, S. Mancini, D.A. De Luca, Meteorological variability and groundwater quality: Examples in different hydrogeological settings. Water (2020). https://doi.org/10.3390/w12051297

  • Z. Li, W.z. Liu, X.c. Zhang, F.l. Zheng, Impacts of land use change and climate variability on hydrology in an agricultural catchment on the Loess Plateau of China. J. Hydrol. 377(1–2), 35–42 (2009). https://doi.org/10.1016/j.jhydrol.2009.08.007

    Article  ADS  Google Scholar 

  • M. Li, S. Zang, B. Zhang, S. Li, C. Wu, A review of remote sensing image classification techniques: The role of Spatio-contextual information. Euro. J. Remote Sens. 47(1), 389–411 (2014). https://doi.org/10.5721/EuJRS20144723

    Article  Google Scholar 

  • S. Liu, T. Wang, Climate change and local adaptation strategies in the middle Inner Mongolia, northern China. Environ. Earth Sci. 66(5), 1449–1458 (2012). https://doi.org/10.1007/s12665-011-1357-5

    Article  Google Scholar 

  • LMS. (2015). Climate Change Toolkit Additional Notes. Lesotho Meteorological Services Ministry of Energy and Meteorology

    Google Scholar 

  • C. Massmann, Identification of factors influencing hydrologic model performance using a top-down approach in a large number of U.S. catchments. Hydrol. Process. 34(1), 4–20 (2020). https://doi.org/10.1002/hyp.13566

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  • N. Matomela, L. Tianxin, L. Morahanye, O.K. Bishoge, H.O. Ikhumhen, Rainfall-runoff estimation of Bojiang lake watershed using SCS-CN model coupled with GIS for watershed management. J. Appl. Adv. Res. (February), 16–24 (2019). https://doi.org/10.21839/jaar.2019.v4i1.263

  • M.W. Menberu, T. Tahvanainen, H. Marttila, M. Irannezhad, A.-K. Ronkanen, J. Penttinen, B. Kløve, Water-table-dependent hydrological changes following peatland forestry drainage and restoration: Analysis of restoration success. Water Resour. Res. 52(5), 3742–3760 (2016). https://doi.org/10.1002/2015WR018578

    Article  ADS  Google Scholar 

  • Michael, O’Driscoll Sandra, Clinton Anne, Jefferson Alex, Manda Sara, McMillan (2010) Urbanization Effects on Watershed Hydrology and In-Stream Processes in the Southern United States. Water 2(3) 605-648. https://doi.org/10.3390/w2030605

  • B.B. Mirus, B.A. Ebel, C.H. Mohr, N. Zegre, Disturbance hydrology: Preparing for an increasingly disturbed future. Water Resour. Res. 53(12), 10007–10016 (2017). https://doi.org/10.1002/2017WR021084

    Article  ADS  Google Scholar 

  • NRC, (National Research Council), Advancing the Science of Climate Change (The National Academies Press, 2010). https://doi.org/10.17226/12782

    Book  Google Scholar 

  • L. Olsson, H. Barbosa, S. Bhadwal, A. Cowie, K. Delusca, D. Flores-Renteria, et al., Land Degredation, in Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems, (2019), pp. 345–436

    Google Scholar 

  • U.U. Paulinus, N.G. Ifedilichukwu, A.C. Ahamefula, Morphometric analysis of sub-watersheds in Oguta and environs, southeastern Nigeria using GIS and remote sensing data. J. Geosci. Geomatics 4(2), 21–28 (2016). https://doi.org/10.12691/jgg-4-2-1

    Article  Google Scholar 

  • C.A. Penn, L.A. Bearup, R.M. Maxwell, D.W. Clow, Numerical experiments to explain multiscale hydrological responses to mountain pine beetle tree mortality in a headwater watershed. Water Resour. Res. 52(4), 3143–3161 (2016). https://doi.org/10.1002/2015WR018300

    Article  ADS  Google Scholar 

  • D.A. Randall, R.A. Wood, S. Bony, R. Colman, T. Fichefet, J. Fyfe, et al., Climate models and their evaluation, in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ed. by S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, H. L. Miller, (Cambridge University Press, Cambridge, United Kingdom and New York, 323, 2007), pp. 589–662. https://doi.org/10.1016/j.cub.2007.06.045

    Chapter  Google Scholar 

  • M. Rodell, P.R. Houser, U. Jambor, J. Gottschalck, K. Mitchell, C.J. Meng, et al., The global land data assimilation system. Bull. Am. Meteorol. Soc. 85(3), 381–394 (2004). https://doi.org/10.1175/BAMS-85-3-381

    Article  ADS  Google Scholar 

  • M.F. Rosenmeier, D.A. Hodell, M. Brenner, J.H. Curtis, J.B. Martin, F.S. Anselmetti, et al., Influence of vegetation change on watershed hydrology: Implications for paleoclimatic interpretation of lacustrine δ18 O records. J. Paleolimnol. 27, 131–141 (2002). https://doi.org/10.1023/A:1013535930777.

  • H.K. Rutter, S.C. Cox, N.F. Dudley Ward, J.J. Weir, Aquifer permeability change caused by a near-field earthquake, Canterbury, New Zealand. Water Resour. Res. 52(11), 8861–8878 (2016). https://doi.org/10.1002/2015WR018524

    Article  ADS  Google Scholar 

  • Safriel, U.N. (2007). The Assessment of global trends in land degradation. In: Sivakumar, M.V.K., Ndiang’ui, N. (eds) Climate and land degradation. environmental science and engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72438-4_1

  • M.C. Sashikkumar, S. Selvam, V.L. Kalyanasundaram, J.C. Johnny, GIS based groundwater modeling study to assess the effect of artificial recharge: A case study from Kodaganar river basin, Dindigul district, Tamil Nadu. J. Geol. Soc. India 89(1), 57–64 (2017). https://doi.org/10.1007/s12594-017-0558-2

    Article  Google Scholar 

  • K.E. Scilling, M.K. Jha, Y.-K. Zhang, P.W. Gassman, C.F. Wolter, Impact of landuse and landcover change on water balance of large agricultral watershed: Historical effects and future directions. Water Resour. Res. 44, 1–12 (2008). https://doi.org/10.1029/2007WR006644

    Article  Google Scholar 

  • J. Shi, F. Yuan, C. Shi, C. Zhao, L. Zhang, L. Ren, et al., Statistical evaluation of the latest GPM-Era IMERG and GSMaP satellite precipitation products in the Yellow River source region. Water (Switzerland) 12(4), 1–23 (2020). https://doi.org/10.3390/W12041006

    Article  Google Scholar 

  • D. Singh, M. Tsiang, B. Rajaratnam, N.S. Diffenbaugh, Observed changes in extreme wet and dry spells during the south Asian summer monsoon season. Nat. Clim. Chang. 4(6), 456–461 (2014). https://doi.org/10.1038/nclimate2208

    Article  ADS  Google Scholar 

  • O.S. Srivastava, D.M. Denis, S.K. Srivastava, M. Kumar, N. Kumar, Morphometric analysis of a semi urban watershed, trans Yamuna, draining at Allahabad using Cartosat (DEM) data and GIS. Int. J. Eng. Sci. (June), 2319–1813 (2014). www.theijes.com

  • A. Srivastava, N. Kumari, M. Maza, Hydrological response to agricultural land use heterogeneity using variable infiltration capacity model. Water Resour. Manag. 34(12), 3779–3794 (2020). https://doi.org/10.1007/s11269-020-02630-4

    Article  Google Scholar 

  • L. Stroosnijder (2007). Rainfall and land degradation. In: Sivakumar, M.V.K., Ndiang’ui, N. (eds) Climate and land degradation. environmental science and engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72438-4_9

  • C.W. Tan, P.P. Zhang, X.X. Zhou, Z.X. Wang, Z.Q. Xu, W. Mao, et al., Quantitative monitoring of leaf area index in wheat of different plant types by integrating NDVI and Beer-Lambert law. Sci. Rep. 10(1), 1–10 (2020). https://doi.org/10.1038/s41598-020-57750-z

    Article  CAS  Google Scholar 

  • M.D. Tomer, K.E. Schilling, A simple approach to distinguish land-use and climate-change effects on watershed hydrology. J. Hydrol. 376(1–2), 24–33 (2009). https://doi.org/10.1016/j.jhydrol.2009.07.029

    Article  ADS  Google Scholar 

  • U.S. Environmental Protection Agency, Climate Change Indicators in the United States Metadata, Third edn. (2014). EPA 430-R-14-004

    Google Scholar 

  • L. Van Roosmalen, T.O. Sonnenborg, K.H. Jensen, Impact of climate and land use change on the hydrology of a large-scale agricultural catchment. Water Resour. Res. 45(7), 1–18 (2009). https://doi.org/10.1029/2007WR006760

    Article  Google Scholar 

  • T.A. Woldesenbet, N.A. Elagib, L. Ribbe, J. Heinrich, Catchment response to climate and land use changes in the Upper Blue Nile sub-basins, Ethiopia. Sci. Total Environ. 644, 193–206 (2018). https://doi.org/10.1016/j.scitotenv.2018.06.198

    Article  ADS  CAS  PubMed  Google Scholar 

  • J. Wu, H. Xie, Research on characteristics of changes of lakes in Wuhan’s main urban area. Procedia Eng. 21, 395–404 (2011). https://doi.org/10.1016/j.proeng.2011.11.2031

    Article  Google Scholar 

  • A.M. Youssef, B. Pradhan, A.M. Hassan, Flash flood risk estimation along the St. Katherine road, southern Sinai, Egypt using GIS based morphometry and satellite imagery. Environ. Earth Sci. 62(3), 611–623 (2011). https://doi.org/10.1007/s12665-010-0551-1

    Article  Google Scholar 

  • Y. Zha, J. Gao, S. Ni, Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J. Remote Sens. 24(3), 583–594 (2003). https://doi.org/10.1080/01431160304987

    Article  Google Scholar 

  • L. Zhang, Z. Nan, Y. Xu, S. Li, Hydrological impacts of land use change and climate variability in the headwater region of the Heihe River Basin, Northwest China. PLoS One 11(6), 1–25 (2016). https://doi.org/10.1371/journal.pone.0158394

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jesudhas, C.J., Muniraj, K., Devaraj, S. (2022). Factors That Influence the Hydrological Process: A Climate and Land Use/Land Cover Perspective. In: Panneerselvam, B., Pande, C.B., Muniraj, K., Balasubramanian, A., Ravichandran, N. (eds) Climate Change Impact on Groundwater Resources. Springer, Cham. https://doi.org/10.1007/978-3-031-04707-7_3

Download citation

Publish with us

Policies and ethics