Skip to main content
  • 978 Accesses

Abstract

In this chapter, we discuss instances of QUBO where the input data is random. Such random instances are often analyzed within the topic of “probabilistic combinatorial optimization” and the goal is to study the behavior of the distribution of the optimal value and the distribution of the optimal solution. The introduction of randomness makes the problem more challenging from a computational perspective. We discuss a probabilistic model with dependent random variables where it is possible to extend many of the known computational results from deterministic QUBO to random QUBO. We also review an interesting asymptotic characterization of the random optimal value under independent and identically distributed random variables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Aldous, The ζ(2) limit in the random assignment problem. Random Struct. Algorithms 18, 381–418 (2001)

    Article  Google Scholar 

  2. J.H. Beardwood, J. Halton, J.M. Hammersley, The shortest path through many points. Math. Proc. Cambridge Philos. Soc. 55, 299–327 (1959)

    Article  Google Scholar 

  3. D. Bertsimas, K. Natarajan, C.P. Teo, Probabilistic combinatorial optimization: moments, semidefinite programming, and asymptotic bounds. SIAM J. Optim. 15, 185–209 (2004)

    Article  Google Scholar 

  4. D. Bertsimas, K. Natarajan, C.P. Teo, Persistence in discrete optimization under data uncertainty. Math. Program. 108, 251–274 (2006)

    Article  Google Scholar 

  5. A. Billionnet, S. Elloumi, Using mixed integer quadratic programming solver for the unconstrained quadratic 0-1 problem. Math. Program. A 109, 55–68 (2007)

    Article  Google Scholar 

  6. A. Billionnet, S. Elloumi, A. Lambert, Extending the QCR method to general mixed-integer programs. Math. Program. 131, 381–401 (2002)

    Article  Google Scholar 

  7. A. Billionnet, S. Elloumi, M.-C. Plateau, Improving the performance of standard solvers for quadratic 0–1 programs by a tight convex reformulation: the QCR method. Discrete Appl. Math. 157, 1185–1197 (2009)

    Article  Google Scholar 

  8. R.E. Burkard, U. Fincke, Probabilistic analysis of some combinatorial optimization problems. Discrete Appl. Math. 12, 21–29 (1985)

    Article  Google Scholar 

  9. A.M. Frieze, On the value of a random minimum spanning tree problem. Discrete Appl. Math. 10, 47–56 (1985)

    Article  Google Scholar 

  10. M. Grant, S. Boyd, Graph implementations for nonsmooth convex programs, in Recent Advances in Learning and Control (A Tribute to M. Vidyasagar), ed. by V. Blondel, S. Boyd, H. Kimura. Lecture Notes in Control and Information Sciences, pp. 95–110. Springer, Berlin (2008)

    Google Scholar 

  11. M. Grant, S. Boyd, CVX: matlab software for disciplined convex programming, version 2.0. beta (2013)

    Google Scholar 

  12. M. Grötschel, L. Lovász, A.J. Schrijver, Geometric Algorithms and Combinatorial Optimization (Wiley, New York, 1988)

    Book  Google Scholar 

  13. P.L. Hammer, A.A. Rubin, Some remarks on quadratic programming with 0-1 variables. RAIRO-Oper. Research 3, 67–79 (1970)

    Google Scholar 

  14. W.K.K. Haneveld, Robustness against dependence in PERT: an application of duality and distributions with known marginals. Math. Program. Study 27, 153–182 (1986)

    Article  Google Scholar 

  15. F. Körner, A tight bound for the Boolean quadratic optimization problem and its use in a branch and bound algorithm. Optimization 19, 711–721 (1988)

    Article  Google Scholar 

  16. I. Meilijson, A. Nadas, Convex majorization with an application to the length of critical path. J. Appl. Probab. 16, 671–677 (1979)

    Article  Google Scholar 

  17. A. Montanari, Optimization of the Sherrington-Kirkpatrick Hamiltonian. SIAM J. Comput. (2021, to appear)

    Google Scholar 

  18. K. Natarajan, M. Song, C.P. Teo, Persistency model and its applications in choice modeling. Manag. Sci. 55, 453–469 (2009)

    Article  Google Scholar 

  19. K. Natarajan, D. Shi, K.C. Toh, Bounds for random binary quadratic programs. SIAM J. Optim. 28, 671–692 (2018)

    Article  Google Scholar 

  20. M. Padberg, The Boolean quadric polytope: some characteristics, facets and relatives. Math. Program. 45, 134–172 (1989)

    Article  Google Scholar 

  21. D. Panchenko, The Sherrington-Kirkpatrick Model. Springer Monographs in Mathematics (Springer, Berlin, 2013)

    Google Scholar 

  22. P.M. Pardalos, G.P. Rodgers, Computational aspects of a branch and bound algorithm for quadratic zero-one programming. Computing 45, 131–144 (1990)

    Article  Google Scholar 

  23. G. Parisi, Infinite number of order parameters for spin-glasses. Phys. Rev. Lett. 43, 1754–1756 (1979)

    Article  Google Scholar 

  24. S. Poljak, F. Rendl, H. Wolkowicz, A recipe for semidefinite relaxation for (0,1)-quadratic programming. J. Global Optim. 7, 51–73 (1995)

    Article  Google Scholar 

  25. D. Sherrington, S. Kirkpatrick, Solvable model of a spin-glass. Phys. Rev. Lett. 35, 1792–1796 (1975)

    Article  Google Scholar 

  26. N.Z. Shor, Class of global minimum bounds of polynomial functions. Cybern. Syst. Anal. 23, 731–734 (1987)

    Article  Google Scholar 

  27. M. Talagrand, The Parisi formula. Ann. Math. 163, 221–263 (2006)

    Article  Google Scholar 

  28. M. Talagrand, Mean Field Models for Spin Glasses. A Series of Modern Surveys in Mathematics, vol. 55 (Springer, Berlin, 2011)

    Google Scholar 

  29. K.C. Toh, M.J. Todd, R.H. Tutuncu, SDPT3 — a Matlab software package for semidefinite programming. Optim. Methods Softw. 11, 545–581 (1999)

    Article  Google Scholar 

  30. K.C. Toh, M.J. Todd, R.H. Tutuncu, Solving semidefinite-quadratic-linear programs using SDPT3. Math. Program. 95, 189–217 (2003)

    Article  Google Scholar 

  31. G. Weiss, Stochastic bounds on distributions of optimal value functions with applications to PERT, network flows and reliability. Oper. Res. 34, 595–605 (1986)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thanks Dongjian Shi and Toh Kim Chuan for their significant contributions to the work discussed in this chapter. This work was done as part of the PhD thesis titled “Regret models and preprocessing techniques for combinatorial optimization under uncertainty” by Dongjian Shi at the National University of Singapore. The author of this chapter and Toh Kim Chuan were his doctoral advisors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karthik Natarajan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Natarajan, K. (2022). The Random QUBO. In: Punnen, A.P. (eds) The Quadratic Unconstrained Binary Optimization Problem. Springer, Cham. https://doi.org/10.1007/978-3-031-04520-2_7

Download citation

Publish with us

Policies and ethics