Skip to main content

GENERIC for Dissipative Solids with Bulk–Interface Interaction

  • 183 Accesses

Part of the Association for Women in Mathematics Series book series (AWMS,volume 31)

Abstract

The modeling framework of GENERIC was originally introduced by Grmela and Öttinger for thermodynamically closed systems. It is phrased with the aid of the energy and entropy as driving functionals for reversible and dissipative processes and suitable geometric structures. Based on the definition of functional derivatives, we propose a GENERIC framework for systems with bulk–interface interaction and apply it to discuss the GENERIC structure of models for delamination processes.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-031-04496-0_15
  • Chapter length: 32 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-031-04496-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   149.99
Price excludes VAT (USA)

References

  1. V. Arnold, V. Kozlov, A. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics (Springer, Berlin, 2006)

    CrossRef  Google Scholar 

  2. G. Barenblatt, The mathematical theory of equilibrium of cracks in brittle fracture. Adv. Appl. Mech. 7, 55–129 (1962)

    CrossRef  MathSciNet  Google Scholar 

  3. E. Bonetti, G. Bonfanti, R. Rossi, Thermal effects in adhesive contact: modelling and analysis. Nonlinearity 22(11), 2697–2731 (2009)

    CrossRef  MathSciNet  Google Scholar 

  4. E. Bonetti, G. Bonfanti, R. Rossi, Analysis of a model coupling volume and surface processes in thermoviscoelasticity. Nonlinear Anal. Real World Appl. 35(6), 2349–2403 (2015)

    MathSciNet  MATH  Google Scholar 

  5. E. Bonetti, G. Bonfanti, R. Rossi, Modeling via the internal energy balance and analysis of adhesive contact with friction in thermoviscoeleasticity. Nonlinear Anal. Real World Appl. 22, 473–507 (2015)

    CrossRef  MathSciNet  Google Scholar 

  6. E.C. D’Avignon, Physical consequences of the Jacobi identity (2015). https://arxiv.org/abs/1510.06455

  7. M. Frémond, Non-Smooth Thermomechanics (Springer, Berlin, 2002)

    CrossRef  Google Scholar 

  8. K. Glavatskiy, D. Bedeaux, Non-equilibrium thermodynamics for surfaces; square gradient theory. Eur. Phys. J. Special Top. 222, 161–175 (2013)

    CrossRef  Google Scholar 

  9. A. Glitzky, A. Mielke, A gradient structure for systems coupling reaction-diffusion effects in bulk and interfaces. ZAMP Z. Angew. Math. Phys. 64, 29–52 (2013)

    CrossRef  MathSciNet  Google Scholar 

  10. A. Griffith, The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond. A 221, 163–198 (1921)

    CrossRef  Google Scholar 

  11. M. Grmela, H. Öttinger, Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Phys. Rev. E 56(6), 6620–6632 (1997)

    CrossRef  Google Scholar 

  12. B. Halphen, Q. Nguyen, Sur les matériaux standards généralisés. J. Mécanique 14, 39–63 (1975)

    MathSciNet  MATH  Google Scholar 

  13. M. Hütter, B. Svendsen, Thermodynamic model formulation for viscoplastic solids as general equations for non-equilibrium reversible-irreversible coupling. Continuum Mech. Thermodyn. 24, 211–227 (2012)

    CrossRef  MathSciNet  Google Scholar 

  14. J. Maas, A. Mielke, Modeling of chemical reaction systems with detailed balance using gradient structures. J. Stat. Phys. 181, 2257–2303 (2020)

    CrossRef  MathSciNet  Google Scholar 

  15. A. Mielke, Formulation of thermoelastic dissipative material behavior using GENERIC. Continuum Mech. Thermodyn. 23(3), 233–256 (2011)

    CrossRef  MathSciNet  Google Scholar 

  16. A. Mielke, A gradient structure for reaction-diffusion systems and for energy-drift-diffusion systems. Nonlinearity 24(4), 1329–1346 (2011). https://doi.org/10.1088/0951-7715/24/4/016

    CrossRef  MathSciNet  Google Scholar 

  17. A. Mielke, Free energy, free entropy, and a gradient structure for thermoplasticity, in Innovative Numerical Approaches for Multi-Field and Multi-Scale Problems, ed. by K. Weinberg, A. Pandolfi. In Honor of Michael Ortiz’s 60th Birthday. Lecture Notes in Applied and Computational Mechanics, vol. 81 (Springer, Cham, 2016), pp. 135–160

    Google Scholar 

  18. A. Mielke, D. Peschka, N. Rotundo, M. Thomas, On some extension of energy-drift-diffusion models: gradient structure for optoelectronic models of semiconductors, in Progress in Industrial Mathematics at ECMI 2016, ed. by P. Quintela et al. (ed.) Mathematics in Industry, vol. 26 (Springer, Berlin, 2017), pp. 291–298

    Google Scholar 

  19. M. Mittnenzweig, A. Mielke, An entropic gradient structure for Lindblad equations and GENERIC for quantum systems coupled to macroscopic models. J. Stat. Phys. 167, 205–233 (2017)

    CrossRef  MathSciNet  Google Scholar 

  20. P.J. Morrison, Hamiltonian description of the ideal fluid. Rev. Mod. Phys. 70(2), 467–521 (1998). https://link.aps.org/doi/10.1103/RevModPhys.70.467

    CrossRef  MathSciNet  Google Scholar 

  21. A. Moses Badlyan, C. Zimmer, Operator-GENERIC formulation of thermodynamics of irreversible processes (2018). https://arxiv.org/abs/1807.09822

  22. H. Öttinger, Nonequilibrium thermodynamics for open systems. Phys. Rev. E 73, 036126 (2006)

    CrossRef  MathSciNet  Google Scholar 

  23. H. Öttinger, M. Grmela, Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism. Phys. Rev. E 56(6), 6633–6655 (1997)

    CrossRef  Google Scholar 

  24. M. Pavelka, V. Klika, M. Grmela, Multiscale Thermo-Dynamics (De Gruyter, Berlin, 2018). https://doi.org/10.1515/9783110350951

    CrossRef  Google Scholar 

  25. D. Peschka, M. Thomas, T. Ahnert, A. Münch, B. Wagner, Gradient Structures for Flows of Concentrated Suspensions. CIM Series in Mathematical Sciences (Springer, Berlin, 2019), pp. 295–318

    Google Scholar 

  26. R. Rossi, T. Roubíček, Thermodynamics and analysis of rate-independent adhesive contact at small strains. Nonlinear Anal. 74(10), 3159–3190 (2011)

    CrossRef  MathSciNet  Google Scholar 

  27. R. Rossi, T. Roubíček, Adhesive contact delaminating at mixed mode, its thermodynamics and analysis. Interfaces Free Bound. 15(1), 1–37 (2013)

    CrossRef  MathSciNet  Google Scholar 

  28. R. Rossi, M. Thomas, From an adhesive to a brittle delamination model in thermo-visco-elasticity. ESAIM Control Optim. Calc. Var. 21, 1–59 (2015)

    CrossRef  MathSciNet  Google Scholar 

  29. R. Rossi, M. Thomas, From adhesive to brittle delamination in visco-elastodynamics. Math. Models Methods Appl. Sci. 27, 1489–1546 (2017)

    CrossRef  MathSciNet  Google Scholar 

  30. R. Rurali, L. Colombo, X. Cartoixà, Ø. Wilhelmsen, T. Trinh, D. Bedeaux, S. Kjelstrup, Heat transport through a solid–solid junction: the interface as an autonomous thermodynamic system. Phys. Chem. Chem. Phys. 18, 13741 (2016)

    CrossRef  Google Scholar 

  31. M. Thomas, A comparison of delamination models: modeling, properties, and applications, in Mathematical Analysis of Continuum Mechanics and Industrial Applications II, Proceedings of the International Conference CoMFoS16, ed. by P. van Meurs, M. Kimura, H. Notsu. Mathematics for Industry, vol. 30 (Springer, Singapore, 2017), pp. 27–38

    Google Scholar 

  32. M. Thomas, C. Zanini, Cohesive zone-type delamination in visco-elasticity. Discrete Contin. Dyn. Syst. Ser. S 10, 1487–1517 (2017)

    MathSciNet  MATH  Google Scholar 

  33. P. Vágner, M. Pavelka, O. Esen, Multiscale thermodynamics of charged mixtures. Contin. Mech. Thermodyn. 33, 237–268 (2021)

    CrossRef  MathSciNet  Google Scholar 

  34. A. Zafferi, D. Peschka, M. Thomas, GENERIC framework for reactive fluid flows. ZAMM Z. Angew. Math. Mech., published online 9.5.2022. https://doi.org/10.1002/zamm.202100254

Download references

Acknowledgements

M.T. acknowledges the partial funding by the DFG through project C09 Dynamics of rock dehydration on multiple scales (project number 235221301) within CRC 1114 Scaling cascades in complex systems and project Nonlinear fracture dynamics: Modeling, Analysis, Approximation, and Applications (project number 441212523) within SPP 2256. M.H. acknowledges the funding by the DFG through SPP 2256 project HE 8716/1-1 Fractal and stochastic homogenization using variational techniques.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marita Thomas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Thomas, M., Heida, M. (2022). GENERIC for Dissipative Solids with Bulk–Interface Interaction. In: Español, M.I., Lewicka, M., Scardia, L., Schlömerkemper, A. (eds) Research in Mathematics of Materials Science. Association for Women in Mathematics Series, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-031-04496-0_15

Download citation