Abstract
The modeling framework of GENERIC was originally introduced by Grmela and Öttinger for thermodynamically closed systems. It is phrased with the aid of the energy and entropy as driving functionals for reversible and dissipative processes and suitable geometric structures. Based on the definition of functional derivatives, we propose a GENERIC framework for systems with bulk–interface interaction and apply it to discuss the GENERIC structure of models for delamination processes.
This is a preview of subscription content, access via your institution.
Buying options
References
V. Arnold, V. Kozlov, A. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics (Springer, Berlin, 2006)
G. Barenblatt, The mathematical theory of equilibrium of cracks in brittle fracture. Adv. Appl. Mech. 7, 55–129 (1962)
E. Bonetti, G. Bonfanti, R. Rossi, Thermal effects in adhesive contact: modelling and analysis. Nonlinearity 22(11), 2697–2731 (2009)
E. Bonetti, G. Bonfanti, R. Rossi, Analysis of a model coupling volume and surface processes in thermoviscoelasticity. Nonlinear Anal. Real World Appl. 35(6), 2349–2403 (2015)
E. Bonetti, G. Bonfanti, R. Rossi, Modeling via the internal energy balance and analysis of adhesive contact with friction in thermoviscoeleasticity. Nonlinear Anal. Real World Appl. 22, 473–507 (2015)
E.C. D’Avignon, Physical consequences of the Jacobi identity (2015). https://arxiv.org/abs/1510.06455
M. Frémond, Non-Smooth Thermomechanics (Springer, Berlin, 2002)
K. Glavatskiy, D. Bedeaux, Non-equilibrium thermodynamics for surfaces; square gradient theory. Eur. Phys. J. Special Top. 222, 161–175 (2013)
A. Glitzky, A. Mielke, A gradient structure for systems coupling reaction-diffusion effects in bulk and interfaces. ZAMP Z. Angew. Math. Phys. 64, 29–52 (2013)
A. Griffith, The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond. A 221, 163–198 (1921)
M. Grmela, H. Öttinger, Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Phys. Rev. E 56(6), 6620–6632 (1997)
B. Halphen, Q. Nguyen, Sur les matériaux standards généralisés. J. Mécanique 14, 39–63 (1975)
M. Hütter, B. Svendsen, Thermodynamic model formulation for viscoplastic solids as general equations for non-equilibrium reversible-irreversible coupling. Continuum Mech. Thermodyn. 24, 211–227 (2012)
J. Maas, A. Mielke, Modeling of chemical reaction systems with detailed balance using gradient structures. J. Stat. Phys. 181, 2257–2303 (2020)
A. Mielke, Formulation of thermoelastic dissipative material behavior using GENERIC. Continuum Mech. Thermodyn. 23(3), 233–256 (2011)
A. Mielke, A gradient structure for reaction-diffusion systems and for energy-drift-diffusion systems. Nonlinearity 24(4), 1329–1346 (2011). https://doi.org/10.1088/0951-7715/24/4/016
A. Mielke, Free energy, free entropy, and a gradient structure for thermoplasticity, in Innovative Numerical Approaches for Multi-Field and Multi-Scale Problems, ed. by K. Weinberg, A. Pandolfi. In Honor of Michael Ortiz’s 60th Birthday. Lecture Notes in Applied and Computational Mechanics, vol. 81 (Springer, Cham, 2016), pp. 135–160
A. Mielke, D. Peschka, N. Rotundo, M. Thomas, On some extension of energy-drift-diffusion models: gradient structure for optoelectronic models of semiconductors, in Progress in Industrial Mathematics at ECMI 2016, ed. by P. Quintela et al. (ed.) Mathematics in Industry, vol. 26 (Springer, Berlin, 2017), pp. 291–298
M. Mittnenzweig, A. Mielke, An entropic gradient structure for Lindblad equations and GENERIC for quantum systems coupled to macroscopic models. J. Stat. Phys. 167, 205–233 (2017)
P.J. Morrison, Hamiltonian description of the ideal fluid. Rev. Mod. Phys. 70(2), 467–521 (1998). https://link.aps.org/doi/10.1103/RevModPhys.70.467
A. Moses Badlyan, C. Zimmer, Operator-GENERIC formulation of thermodynamics of irreversible processes (2018). https://arxiv.org/abs/1807.09822
H. Öttinger, Nonequilibrium thermodynamics for open systems. Phys. Rev. E 73, 036126 (2006)
H. Öttinger, M. Grmela, Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism. Phys. Rev. E 56(6), 6633–6655 (1997)
M. Pavelka, V. Klika, M. Grmela, Multiscale Thermo-Dynamics (De Gruyter, Berlin, 2018). https://doi.org/10.1515/9783110350951
D. Peschka, M. Thomas, T. Ahnert, A. Münch, B. Wagner, Gradient Structures for Flows of Concentrated Suspensions. CIM Series in Mathematical Sciences (Springer, Berlin, 2019), pp. 295–318
R. Rossi, T. Roubíček, Thermodynamics and analysis of rate-independent adhesive contact at small strains. Nonlinear Anal. 74(10), 3159–3190 (2011)
R. Rossi, T. Roubíček, Adhesive contact delaminating at mixed mode, its thermodynamics and analysis. Interfaces Free Bound. 15(1), 1–37 (2013)
R. Rossi, M. Thomas, From an adhesive to a brittle delamination model in thermo-visco-elasticity. ESAIM Control Optim. Calc. Var. 21, 1–59 (2015)
R. Rossi, M. Thomas, From adhesive to brittle delamination in visco-elastodynamics. Math. Models Methods Appl. Sci. 27, 1489–1546 (2017)
R. Rurali, L. Colombo, X. Cartoixà, Ø. Wilhelmsen, T. Trinh, D. Bedeaux, S. Kjelstrup, Heat transport through a solid–solid junction: the interface as an autonomous thermodynamic system. Phys. Chem. Chem. Phys. 18, 13741 (2016)
M. Thomas, A comparison of delamination models: modeling, properties, and applications, in Mathematical Analysis of Continuum Mechanics and Industrial Applications II, Proceedings of the International Conference CoMFoS16, ed. by P. van Meurs, M. Kimura, H. Notsu. Mathematics for Industry, vol. 30 (Springer, Singapore, 2017), pp. 27–38
M. Thomas, C. Zanini, Cohesive zone-type delamination in visco-elasticity. Discrete Contin. Dyn. Syst. Ser. S 10, 1487–1517 (2017)
P. Vágner, M. Pavelka, O. Esen, Multiscale thermodynamics of charged mixtures. Contin. Mech. Thermodyn. 33, 237–268 (2021)
A. Zafferi, D. Peschka, M. Thomas, GENERIC framework for reactive fluid flows. ZAMM Z. Angew. Math. Mech., published online 9.5.2022. https://doi.org/10.1002/zamm.202100254
Acknowledgements
M.T. acknowledges the partial funding by the DFG through project C09 Dynamics of rock dehydration on multiple scales (project number 235221301) within CRC 1114 Scaling cascades in complex systems and project Nonlinear fracture dynamics: Modeling, Analysis, Approximation, and Applications (project number 441212523) within SPP 2256. M.H. acknowledges the funding by the DFG through SPP 2256 project HE 8716/1-1 Fractal and stochastic homogenization using variational techniques.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Thomas, M., Heida, M. (2022). GENERIC for Dissipative Solids with Bulk–Interface Interaction. In: Español, M.I., Lewicka, M., Scardia, L., Schlömerkemper, A. (eds) Research in Mathematics of Materials Science. Association for Women in Mathematics Series, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-031-04496-0_15
Download citation
DOI: https://doi.org/10.1007/978-3-031-04496-0_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-04495-3
Online ISBN: 978-3-031-04496-0
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)