Skip to main content

Live-Cell Imaging: A Balancing Act Between Speed, Sensitivity, and Resolution

What You Will Learn in This Chapter

Live-cell imaging is perhaps one of the most exciting and challenging activities in the field of microscopy. It is exciting as recent developments in microscope technology have enabled scientists to visualize cellular and subcellular processes in real time down to the molecular level. With this comes the prospect of studying the mechanisms of diseases in greater detail and finding possible therapeutic solutions. Nevertheless, live-cell imaging is equally challenging because cells themselves and in fact—all cellular processes—are extremely sensitive to the very impact of using light for their visualization. The aim of this chapter is to provide a practical overview for early PhD students as well as more experienced post-docs, who will spend considerable time mastering the most important challenges and prerequisites in the very rapidly evolving field of live-cell microscopy.

Keywords

  • Live cells
  • Microscopy
  • Phototoxicity
  • Controlled environment
  • Focus drift
  • Fluorescent probes
  • Automation

“In honour of Professor Anirban Banerjee, who taught us the wonders of observing living cells…”

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Change history

  • 29 January 2023

    The original version of this chapter was inadvertently published with errors. The following corrections have been made after publication.

Abbreviations

AOTF:

Acousto-optical tunable filter

BF:

Brightfield

CCD:

Charge-coupled device

CIN:

Chromosome instability

CMOS:

Complementary metal-oxide-semiconductor

CON:

Confocal microscopy

CRC:

Colorectal cancer

CRISPR:

Clustered regularly interspaced short palindromic repeats

CRISPR-HOT:

CRISPR-Cas9-mediated homology-independent organoid transgenesis

CSLM:

Confocal scanning laser microscopy

DAPI:

4′,6-diamidino-2-fenylindool

DIC:

Differential interference contrast

EM-CCD:

Electron multiplying charged-coupled device

EPI:

Epifluorescence microscopy

FL:

Fluorescence

FOV:

Field of view

FRAP:

Fluorescence recovery after photobleaching

FRET:

Fluorescence resonance energy transfer

GFP:

Green fluorescent protein

HCA:

High-content analysis

HCS:

High-content screening

HEPA:

High-efficiency particulate air

HUVEC:

Human umbilical vein endothelial cells

IR:

Infrared

LED:

Light-emitting diode

NA:

Numerical aperture

NIR:

Near-infrared

PFS:

Perfect focus system

PMT:

Photomultiplier tube

PSF:

Point spread function

PUM-HD:

Pumilio-homology domain

PZF:

Polydactyl zinc finger

RCM:

Re-scanning confocal microscopy

RFP:

Red fluorescent protein

ROI:

Region of interest

SIM:

Structured illumination microscopy

SNR:

Signal-to-noise ratio

STED:

Stimulated emission depletion microscopy

STORM:

Stochastic optical reconstruction microscopy

TALE:

Transcription activator-like effector

TIRF:

Total internal reflection fluorescence

TTL:

Transistor-transistor logic

UV:

Ultraviolet

References

  1. Pattison DI, Davies MJ. Actions of ultraviolet light on cellular structures. EXS. 2006;96:131–57.

    CAS  Google Scholar 

  2. Dixit R, Cyr R. Cell damage and reactive oxygen species production induced by fluorescence microscopy: effect on mitosis and guidelines for non-invasive fluorescence microscopy. Plant J. 2003;36(2):280–90.

    CrossRef  CAS  Google Scholar 

  3. Grzelak A, Rychlik B, Bartosz G. Light-dependent generation of reactive oxygen species in cell culture media. Free Radic Biol Med. 2001;30(12):1418–25.

    CrossRef  CAS  Google Scholar 

  4. Godley BF, Shamsi FA, Liang F-Q, Jarrett SG, Davies S, Boulton M. Blue light induces mitochondrial DNA damage and free radical production in epithelial cells. J Biol Chem. 2005;280(22):21061–6.

    CrossRef  CAS  Google Scholar 

  5. Wittmann T, Bokoch GM, Waterman-Storer CM. Regulation of leading edge microtubule and actin dynamics downstream of Rac1. J Cell Biol. 2003;161(5):845–51.

    CrossRef  CAS  Google Scholar 

  6. Zhai Y, Kronebusch PJ, Borisy GG. Kinetochore microtubule dynamics and the metaphase-anaphase transition. J Cell Biol. 1995;131(3):721–34.

    CrossRef  CAS  Google Scholar 

  7. Rodionov VI, Borisy GG. Microtubule treadmilling in vivo. Science (New York, NY). 1997;275(5297):215–8.

    CrossRef  CAS  Google Scholar 

  8. Pologruto TA, et al. ScanImage: flexible software for operating laser scanning microscopes. Biomed Eng Online. 2003;2:13.

    CrossRef  Google Scholar 

  9. Icha J, Weber M, Waters JC, Norden C. Phototoxicity in live fluorescence microscopy, and how to avoid it. BioEssays. 2017;39(8):170003.

    CrossRef  Google Scholar 

  10. Shen F-F, Chen Y, Dai X, Zhang H-Y, Zhang B, Liu Y, Liu Y. Purely organic light-harvesting phosphorescence energy transfer by beta-cyclodextrin pseudorotaxane for mitochondria targeted imaging. Chem Sci. 2020;12(5):1851–7.

    CrossRef  Google Scholar 

  11. Shimomura O, Johnson FH, Saiga Y. Extraction, purification and properties of aequorin, a bioluminescent proten from theluminous hydromedusan, Aequorea. J Cell Comp Physiol. 1962;59:223–39.

    CrossRef  CAS  Google Scholar 

  12. Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ. Primary structure of the Aequorea victoria green-fluorescent protein. Gene. 1992;111:229–33.

    CrossRef  CAS  Google Scholar 

  13. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC. Green fluorescent protein as a marker for gene expression. Science. 1994;263:802–5.

    CrossRef  CAS  Google Scholar 

  14. Heim R, Prasher DC, Tsien RY. Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc Natl Acad Sci U S A. 1994;91:12501–4.

    CrossRef  CAS  Google Scholar 

  15. Keppler A, Gendreizig S, Gronemeyer T, Pick H, Vogel H, Johnsson K. A general method for the covalent labelling of fusion proteins with small molecules in vivo. Nat Biotechnol. 2003;21:86–9.

    CrossRef  CAS  Google Scholar 

  16. Wilhelm J, Kühn S, Tarnawski M, Gotthard G, Tünnermann J, Tänzer T, Karpenko J, Mertes N, Xue L, Uhrig U, Reinstein J, Hiblot J, Johnsson K. Kinetic and structural characterization of the self-labeling protein tags HaloTag7, SNAP-tag, and CLIP-tag. Biochemistry. 2021;60(33):2560–75.

    CrossRef  CAS  Google Scholar 

  17. Griffin BA, Adams SR, Tsien RY. Specific covalent labelling of recombinant protein molecules inside live cells. Science. 1998;281:269–72.

    CrossRef  CAS  Google Scholar 

  18. Uchinomiya SH, Nonaka H, Fujishima SH, Tsukiji S, Ojida A, Hamachi I. Site-specific covalent labeling of His-tag fused proteins with a reactive Ni(II)-NTA probe. Chem Commun (Camb). 2009;39:5880–2.

    CrossRef  Google Scholar 

  19. Tamura T, Hamachi I. Chemistry for covalent modification of endogenous/native proteins: from test tubes to complex biological systems. J Am Chem Soc. 2019;141(7):2782–99.

    CrossRef  CAS  Google Scholar 

  20. Caspersson T, Farber S, Foley GE, Kudynowski J, Modest EJ, Simonsson E, Wagh U, Zech L. Chemical differentiation along metaphase chromosomes. Exp Cell Res. 1968;49:219–22.

    CrossRef  CAS  Google Scholar 

  21. Lindhout BI, Fransz P, Tessadori F, Meckel T, Hooykaas PJ, van der Zaal BJ. Live cell imaging of repetitive DNA sequences via GFP-tagged polydactyl zinc finger proteins. Nucleic Acids Res. 2007;35(16):e107.

    CrossRef  Google Scholar 

  22. Chen B, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W, Li G-W, Park J, Blackburn EH, Weissman JS, Qi L-S, Huang B. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell. 2013;155(7):1479–91.

    CrossRef  CAS  Google Scholar 

  23. Bertrand E, Chartrand P, Schaefer M, Shenoy SM, Singer RH, Long RM. Localization of ASH1 mRNA particles in living yeast. Mol Cell. 1998;2(4):437–45.

    CrossRef  CAS  Google Scholar 

  24. Paige JS, Nguyen-Duc T, Song W, Jaffrey SR. Fluorescence imaging of cellular metabolites with RNA. Science. 2012;335(6073):1194.

    CrossRef  CAS  Google Scholar 

  25. Filonov GS, Moon JD, Svensen N, Jaffrey SR. Broccoli: rapid selection of an RNA mimic of green fluorescent protein by fluorescence-based selection and directed evolution. J Am Chem Soc. 2014;136(46):16299–308.

    CrossRef  CAS  Google Scholar 

  26. Abudayyeh OO, Gootenberg JS, Essletzbichler P, Joung HS, Belanto JJ, Verdine V, Cox DBT, Kellner MJ, Regev A, Lander ES, Voytas DF, Ting AY, Zhang F. RNA targeting with CRISPR-Cas13. Nature. 2017;550(7675):280–4.

    CrossRef  Google Scholar 

  27. Suseela YV, Narayanaswamy N, Pratihar S, Govindaraju T. Far-red fluorescent probes for canonical and non-canonical nucleic acid structures: current progress and future implications. Chem Soc Rev. 2018;47(3):1098–131.

    CrossRef  CAS  Google Scholar 

  28. Liu W, Zhou B, Niu G, Ge J, Wu J, Zhang H, Xu H, Wang P. Deep-red emissive crescent-shaped fluorescent dyes: substituent effect on live cell imaging. ACS Appl Mater Interfaces. 2015;7(13):7421–7.

    CrossRef  CAS  Google Scholar 

  29. Li Q, Chang YT. A protocol for preparing, characterizing and using three RNA-specific, live cell imaging probes: E36, E144 and F22. Nat Protoc. 2006;1(6):2922–32.

    CrossRef  CAS  Google Scholar 

  30. Stevens N, O’Connor N, Vishwasrau H, Samaroo D, Kandel ER, Akins DL, Drain CM, Turro NJ. Two color RNA intercalating probe for cell imaging applications. J Am Chem Soc. 2008;130(23):7182–3.

    CrossRef  CAS  Google Scholar 

  31. Day RN, Davidson MW. Fluorescent proteins for FRET microscopy: monitoring protein interactions in living cells. BioEssays. 2012;34(5):341–50.

    CrossRef  CAS  Google Scholar 

  32. Berney C, Danuser G. FRET or no FRET: a quantitative comparison. Biophys J. 2003;84:3992–4010.

    CrossRef  CAS  Google Scholar 

  33. Gamboni F, Escobar GA, Moore EE, Dzieciatkowska M, Hansen KC, Mitra S, Mydam TA, Silliman CC, Banerjee A. Clathrin complexes with the inhibitor kappa B kinase signalosome: imaging the interactome. Phys Rep. 2014;2(7):12035.

    Google Scholar 

  34. Zhang Y, Judson RL. Evaluation of holographic imaging cytometer HoloMonitor M4® motility applications. Cytometry A. 2018;93(11):1125–31.

    CrossRef  CAS  Google Scholar 

  35. Janicke B, Kårsnäs A, Egelberg P, Alm K. Label-free high temporal resolution assessment of cell proliferation using digital holographic microscopy. Cytometry A. 2017;91(5):460–9.

    CrossRef  Google Scholar 

  36. Sebesta M, Egelberg PJ, Langberg A, Lindskov J-H, Alm K, Janicke B. HoloMonitor M4: holographic imaging cytometer for real-time kinetic label-free live-cell analysis of adherent cells. Boston: Phase Holographic Imaging PHI Inc; 2016.

    Google Scholar 

  37. Torras N, Garcia-Diaz M, Fernandez-Majada F, Martinez E. Mimicking epithelial tissues in three-dimensional cell culture models. Front Bioeng Biotechnol. 2018;6:197.

    CrossRef  Google Scholar 

  38. Lin RZ, Chang HY. Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnol J. 2008;3(9–10):1172–84.

    CrossRef  CAS  Google Scholar 

  39. Rossi G, Manfrin A, Lutolf MP. Progress and potential in organoid research. Nat Rev Genet. 2018;19(11):671–87.

    CrossRef  CAS  Google Scholar 

  40. Fang Y, Eglen RM. Three-dimensional cell cultures in drug discovery and development. SLAS Discov. 2017;22(5):456–72.

    CrossRef  CAS  Google Scholar 

  41. Leary E, Rhee C, Wilks BT, Morgan JR. Quantitative live-cell confocal imaging of 3D spheroids in a high-throughput format. SLAS Technol. 2018;23(3):231–42.

    CrossRef  Google Scholar 

  42. Grist SM, Nasseri SS, Laplatine L, Schmok JC, Yao D, Hua J, Chrostowski L, Cheung KC. Long-term monitoring in a microfluidic system to study tumour spheroid response to chronic and cycling hypoxia. Sci Rep. 2019;9(1):17782.

    CrossRef  Google Scholar 

  43. Artegiani B, Hendriks D, Beumer J, Kok R, Zheng X, Joore J, de Sousa C, Lopes S, van Zon J, Tans S, Clevers H. Fast and efficient generation of knock-in human organoids using homology-independent CRISPR-Cas9 precision genome editing. Nat Cell Biol. 2020;22(3):321–31.

    CrossRef  CAS  Google Scholar 

  44. Bolhaqueiro ACF, Ponsioen B, Bakker B, Klaasen SJ, Kucukkose E, van Jaarsveld RH, Vivié J, Verlaan-Klink I, Hami N, Spierings DCJ, Sasaki N, Dutta D, Boj SF, Vries RGJ, Lansdorp PM, van de Wetering M, van Oudenaarden A, Clevers H, Kranenburg O, Foijer F, Snippert HJG, Kops GJPL. Ongoing chromosomal instability and karyotype evolution in human colorectal cancer organoids. Nat Genet. 2019;51(5):824–35.

    CrossRef  CAS  Google Scholar 

  45. Held M, Santeramo I, Wilm B, Murray P, Lévy R. Ex vivo live cell tracking in kidney organoids using light sheet fluorescence microscopy. PLoS One. 2018;13(7):e0199918.

    CrossRef  Google Scholar 

  46. Boutros M, Heigwer F, Laufer C. Microscopy-based high-content screening. Cell. 2015;163(6):1314–25.

    CrossRef  CAS  Google Scholar 

  47. Caicedo JC, Singh S, Carpenter AE. Applications in image-based profiling of perturbations. Curr Opin Biotechnol. 2016;39:134–42.

    CrossRef  CAS  Google Scholar 

  48. Arrasate M, Finkbeiner S. Automated microscope system for determining factors that predict neuronal fate. Proc Natl Acad Sci U S A. 2005;102(10):3840–5.

    CrossRef  CAS  Google Scholar 

  49. Snijder B, Sacher R, Rämö P, Liberali P, Mench K, Wolfrum N, Burleigh L, Scott CC, Verheije MH, Mercer J, Moese S, Heger T, Theusner K, Jurgeit A, Lamparter D, Balistreri G, Schelhaas M, De Haan CAM, Marjomäki V, Hyypiä T, Rottier PJM, Sodeik B, Marsh M, Gruenberg J, Amara A, Greber U, Helenius A, Pelkmans L. Single-cell analysis of population context advances RNAi screening at multiple levels. Mol Syst Biol. 2012;8:579.

    CrossRef  Google Scholar 

  50. Snijder B, Pelkmans L. Origins of regulated cell-to-cell variability. Nat Rev Mol Cell Biol. 2011;12(2):119–25.

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendix: Microscope Company and Resources List with Internet-Links

Appendix: Microscope Company and Resources List with Internet-Links

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kole, J., Ahmed, H., Chatterjee, N., Lukinavičius, G., Musters, R. (2022). Live-Cell Imaging: A Balancing Act Between Speed, Sensitivity, and Resolution. In: Nechyporuk-Zloy, V. (eds) Principles of Light Microscopy: From Basic to Advanced . Springer, Cham. https://doi.org/10.1007/978-3-031-04477-9_6

Download citation