What You Will Learn in This Chapter
Live-cell imaging is perhaps one of the most exciting and challenging activities in the field of microscopy. It is exciting as recent developments in microscope technology have enabled scientists to visualize cellular and subcellular processes in real time down to the molecular level. With this comes the prospect of studying the mechanisms of diseases in greater detail and finding possible therapeutic solutions. Nevertheless, live-cell imaging is equally challenging because cells themselves and in fact—all cellular processes—are extremely sensitive to the very impact of using light for their visualization. The aim of this chapter is to provide a practical overview for early PhD students as well as more experienced post-docs, who will spend considerable time mastering the most important challenges and prerequisites in the very rapidly evolving field of live-cell microscopy.
Keywords
- Live cells
- Microscopy
- Phototoxicity
- Controlled environment
- Focus drift
- Fluorescent probes
- Automation
“In honour of Professor Anirban Banerjee, who taught us the wonders of observing living cells…”
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsChange history
29 January 2023
The original version of this chapter was inadvertently published with errors. The following corrections have been made after publication.
Abbreviations
- AOTF:
-
Acousto-optical tunable filter
- BF:
-
Brightfield
- CCD:
-
Charge-coupled device
- CIN:
-
Chromosome instability
- CMOS:
-
Complementary metal-oxide-semiconductor
- CON:
-
Confocal microscopy
- CRC:
-
Colorectal cancer
- CRISPR:
-
Clustered regularly interspaced short palindromic repeats
- CRISPR-HOT:
-
CRISPR-Cas9-mediated homology-independent organoid transgenesis
- CSLM:
-
Confocal scanning laser microscopy
- DAPI:
-
4′,6-diamidino-2-fenylindool
- DIC:
-
Differential interference contrast
- EM-CCD:
-
Electron multiplying charged-coupled device
- EPI:
-
Epifluorescence microscopy
- FL:
-
Fluorescence
- FOV:
-
Field of view
- FRAP:
-
Fluorescence recovery after photobleaching
- FRET:
-
Fluorescence resonance energy transfer
- GFP:
-
Green fluorescent protein
- HCA:
-
High-content analysis
- HCS:
-
High-content screening
- HEPA:
-
High-efficiency particulate air
- HUVEC:
-
Human umbilical vein endothelial cells
- IR:
-
Infrared
- LED:
-
Light-emitting diode
- NA:
-
Numerical aperture
- NIR:
-
Near-infrared
- PFS:
-
Perfect focus system
- PMT:
-
Photomultiplier tube
- PSF:
-
Point spread function
- PUM-HD:
-
Pumilio-homology domain
- PZF:
-
Polydactyl zinc finger
- RCM:
-
Re-scanning confocal microscopy
- RFP:
-
Red fluorescent protein
- ROI:
-
Region of interest
- SIM:
-
Structured illumination microscopy
- SNR:
-
Signal-to-noise ratio
- STED:
-
Stimulated emission depletion microscopy
- STORM:
-
Stochastic optical reconstruction microscopy
- TALE:
-
Transcription activator-like effector
- TIRF:
-
Total internal reflection fluorescence
- TTL:
-
Transistor-transistor logic
- UV:
-
Ultraviolet
References
Pattison DI, Davies MJ. Actions of ultraviolet light on cellular structures. EXS. 2006;96:131–57.
Dixit R, Cyr R. Cell damage and reactive oxygen species production induced by fluorescence microscopy: effect on mitosis and guidelines for non-invasive fluorescence microscopy. Plant J. 2003;36(2):280–90.
Grzelak A, Rychlik B, Bartosz G. Light-dependent generation of reactive oxygen species in cell culture media. Free Radic Biol Med. 2001;30(12):1418–25.
Godley BF, Shamsi FA, Liang F-Q, Jarrett SG, Davies S, Boulton M. Blue light induces mitochondrial DNA damage and free radical production in epithelial cells. J Biol Chem. 2005;280(22):21061–6.
Wittmann T, Bokoch GM, Waterman-Storer CM. Regulation of leading edge microtubule and actin dynamics downstream of Rac1. J Cell Biol. 2003;161(5):845–51.
Zhai Y, Kronebusch PJ, Borisy GG. Kinetochore microtubule dynamics and the metaphase-anaphase transition. J Cell Biol. 1995;131(3):721–34.
Rodionov VI, Borisy GG. Microtubule treadmilling in vivo. Science (New York, NY). 1997;275(5297):215–8.
Pologruto TA, et al. ScanImage: flexible software for operating laser scanning microscopes. Biomed Eng Online. 2003;2:13.
Icha J, Weber M, Waters JC, Norden C. Phototoxicity in live fluorescence microscopy, and how to avoid it. BioEssays. 2017;39(8):170003.
Shen F-F, Chen Y, Dai X, Zhang H-Y, Zhang B, Liu Y, Liu Y. Purely organic light-harvesting phosphorescence energy transfer by beta-cyclodextrin pseudorotaxane for mitochondria targeted imaging. Chem Sci. 2020;12(5):1851–7.
Shimomura O, Johnson FH, Saiga Y. Extraction, purification and properties of aequorin, a bioluminescent proten from theluminous hydromedusan, Aequorea. J Cell Comp Physiol. 1962;59:223–39.
Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ. Primary structure of the Aequorea victoria green-fluorescent protein. Gene. 1992;111:229–33.
Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC. Green fluorescent protein as a marker for gene expression. Science. 1994;263:802–5.
Heim R, Prasher DC, Tsien RY. Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc Natl Acad Sci U S A. 1994;91:12501–4.
Keppler A, Gendreizig S, Gronemeyer T, Pick H, Vogel H, Johnsson K. A general method for the covalent labelling of fusion proteins with small molecules in vivo. Nat Biotechnol. 2003;21:86–9.
Wilhelm J, Kühn S, Tarnawski M, Gotthard G, Tünnermann J, Tänzer T, Karpenko J, Mertes N, Xue L, Uhrig U, Reinstein J, Hiblot J, Johnsson K. Kinetic and structural characterization of the self-labeling protein tags HaloTag7, SNAP-tag, and CLIP-tag. Biochemistry. 2021;60(33):2560–75.
Griffin BA, Adams SR, Tsien RY. Specific covalent labelling of recombinant protein molecules inside live cells. Science. 1998;281:269–72.
Uchinomiya SH, Nonaka H, Fujishima SH, Tsukiji S, Ojida A, Hamachi I. Site-specific covalent labeling of His-tag fused proteins with a reactive Ni(II)-NTA probe. Chem Commun (Camb). 2009;39:5880–2.
Tamura T, Hamachi I. Chemistry for covalent modification of endogenous/native proteins: from test tubes to complex biological systems. J Am Chem Soc. 2019;141(7):2782–99.
Caspersson T, Farber S, Foley GE, Kudynowski J, Modest EJ, Simonsson E, Wagh U, Zech L. Chemical differentiation along metaphase chromosomes. Exp Cell Res. 1968;49:219–22.
Lindhout BI, Fransz P, Tessadori F, Meckel T, Hooykaas PJ, van der Zaal BJ. Live cell imaging of repetitive DNA sequences via GFP-tagged polydactyl zinc finger proteins. Nucleic Acids Res. 2007;35(16):e107.
Chen B, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W, Li G-W, Park J, Blackburn EH, Weissman JS, Qi L-S, Huang B. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell. 2013;155(7):1479–91.
Bertrand E, Chartrand P, Schaefer M, Shenoy SM, Singer RH, Long RM. Localization of ASH1 mRNA particles in living yeast. Mol Cell. 1998;2(4):437–45.
Paige JS, Nguyen-Duc T, Song W, Jaffrey SR. Fluorescence imaging of cellular metabolites with RNA. Science. 2012;335(6073):1194.
Filonov GS, Moon JD, Svensen N, Jaffrey SR. Broccoli: rapid selection of an RNA mimic of green fluorescent protein by fluorescence-based selection and directed evolution. J Am Chem Soc. 2014;136(46):16299–308.
Abudayyeh OO, Gootenberg JS, Essletzbichler P, Joung HS, Belanto JJ, Verdine V, Cox DBT, Kellner MJ, Regev A, Lander ES, Voytas DF, Ting AY, Zhang F. RNA targeting with CRISPR-Cas13. Nature. 2017;550(7675):280–4.
Suseela YV, Narayanaswamy N, Pratihar S, Govindaraju T. Far-red fluorescent probes for canonical and non-canonical nucleic acid structures: current progress and future implications. Chem Soc Rev. 2018;47(3):1098–131.
Liu W, Zhou B, Niu G, Ge J, Wu J, Zhang H, Xu H, Wang P. Deep-red emissive crescent-shaped fluorescent dyes: substituent effect on live cell imaging. ACS Appl Mater Interfaces. 2015;7(13):7421–7.
Li Q, Chang YT. A protocol for preparing, characterizing and using three RNA-specific, live cell imaging probes: E36, E144 and F22. Nat Protoc. 2006;1(6):2922–32.
Stevens N, O’Connor N, Vishwasrau H, Samaroo D, Kandel ER, Akins DL, Drain CM, Turro NJ. Two color RNA intercalating probe for cell imaging applications. J Am Chem Soc. 2008;130(23):7182–3.
Day RN, Davidson MW. Fluorescent proteins for FRET microscopy: monitoring protein interactions in living cells. BioEssays. 2012;34(5):341–50.
Berney C, Danuser G. FRET or no FRET: a quantitative comparison. Biophys J. 2003;84:3992–4010.
Gamboni F, Escobar GA, Moore EE, Dzieciatkowska M, Hansen KC, Mitra S, Mydam TA, Silliman CC, Banerjee A. Clathrin complexes with the inhibitor kappa B kinase signalosome: imaging the interactome. Phys Rep. 2014;2(7):12035.
Zhang Y, Judson RL. Evaluation of holographic imaging cytometer HoloMonitor M4® motility applications. Cytometry A. 2018;93(11):1125–31.
Janicke B, Kårsnäs A, Egelberg P, Alm K. Label-free high temporal resolution assessment of cell proliferation using digital holographic microscopy. Cytometry A. 2017;91(5):460–9.
Sebesta M, Egelberg PJ, Langberg A, Lindskov J-H, Alm K, Janicke B. HoloMonitor M4: holographic imaging cytometer for real-time kinetic label-free live-cell analysis of adherent cells. Boston: Phase Holographic Imaging PHI Inc; 2016.
Torras N, Garcia-Diaz M, Fernandez-Majada F, Martinez E. Mimicking epithelial tissues in three-dimensional cell culture models. Front Bioeng Biotechnol. 2018;6:197.
Lin RZ, Chang HY. Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnol J. 2008;3(9–10):1172–84.
Rossi G, Manfrin A, Lutolf MP. Progress and potential in organoid research. Nat Rev Genet. 2018;19(11):671–87.
Fang Y, Eglen RM. Three-dimensional cell cultures in drug discovery and development. SLAS Discov. 2017;22(5):456–72.
Leary E, Rhee C, Wilks BT, Morgan JR. Quantitative live-cell confocal imaging of 3D spheroids in a high-throughput format. SLAS Technol. 2018;23(3):231–42.
Grist SM, Nasseri SS, Laplatine L, Schmok JC, Yao D, Hua J, Chrostowski L, Cheung KC. Long-term monitoring in a microfluidic system to study tumour spheroid response to chronic and cycling hypoxia. Sci Rep. 2019;9(1):17782.
Artegiani B, Hendriks D, Beumer J, Kok R, Zheng X, Joore J, de Sousa C, Lopes S, van Zon J, Tans S, Clevers H. Fast and efficient generation of knock-in human organoids using homology-independent CRISPR-Cas9 precision genome editing. Nat Cell Biol. 2020;22(3):321–31.
Bolhaqueiro ACF, Ponsioen B, Bakker B, Klaasen SJ, Kucukkose E, van Jaarsveld RH, Vivié J, Verlaan-Klink I, Hami N, Spierings DCJ, Sasaki N, Dutta D, Boj SF, Vries RGJ, Lansdorp PM, van de Wetering M, van Oudenaarden A, Clevers H, Kranenburg O, Foijer F, Snippert HJG, Kops GJPL. Ongoing chromosomal instability and karyotype evolution in human colorectal cancer organoids. Nat Genet. 2019;51(5):824–35.
Held M, Santeramo I, Wilm B, Murray P, Lévy R. Ex vivo live cell tracking in kidney organoids using light sheet fluorescence microscopy. PLoS One. 2018;13(7):e0199918.
Boutros M, Heigwer F, Laufer C. Microscopy-based high-content screening. Cell. 2015;163(6):1314–25.
Caicedo JC, Singh S, Carpenter AE. Applications in image-based profiling of perturbations. Curr Opin Biotechnol. 2016;39:134–42.
Arrasate M, Finkbeiner S. Automated microscope system for determining factors that predict neuronal fate. Proc Natl Acad Sci U S A. 2005;102(10):3840–5.
Snijder B, Sacher R, Rämö P, Liberali P, Mench K, Wolfrum N, Burleigh L, Scott CC, Verheije MH, Mercer J, Moese S, Heger T, Theusner K, Jurgeit A, Lamparter D, Balistreri G, Schelhaas M, De Haan CAM, Marjomäki V, Hyypiä T, Rottier PJM, Sodeik B, Marsh M, Gruenberg J, Amara A, Greber U, Helenius A, Pelkmans L. Single-cell analysis of population context advances RNAi screening at multiple levels. Mol Syst Biol. 2012;8:579.
Snijder B, Pelkmans L. Origins of regulated cell-to-cell variability. Nat Rev Mol Cell Biol. 2011;12(2):119–25.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Appendix: Microscope Company and Resources List with Internet-Links
Appendix: Microscope Company and Resources List with Internet-Links
-
Andor—www.andor.oxinst.com
-
Applied Scientific Instrumentation (ASI)—www.asiimaging.com
-
Chroma—www.chroma.com
-
Confocal.nl—www.confocal.nl
-
CoolLED—www.coolled.com
-
Hamamatsu—www.hamamatsu.com
-
Intelligent Imaging Innovations (3i)—www.intelligent-imaging.com
-
Leica Microsystems—www.leica-microsystems.com (and www.leica-microsystems.com/science-lab/science-lab-home)
-
Lumencor—www.lumencor.com
-
Mad City Labs (MCL) GmbH—www.madcitylabs.eu
-
μManager—www.micro-manager.org
-
Mathworks—www.mathworks.com
-
Media Cybernetics—www.mediacy.com
-
Molecular Devices—www.moleculardevices.com
-
National Instruments—www.ni.com
-
Nikon Instruments—www.microsope.healthcare.nikon.com (and www.microscopyu.com)
-
Okolab—www.oko-lab.com
-
Olympus Microscopy—www.olympus-lifescience.com (and www.olympus-lifescience.com/en/learn)
-
Perkin-Elmer—www.perkinelmer.com
-
Phase Holographic Imaging (PHI)—https:/phiab.com/
-
Photometrics—www.photometrics.com
-
Physics Instruments (PI)—www.physikinstrumente.com
-
Prior Scientific—www.prior.com
-
ScanImage—www.scanimage.org
-
Semrock—www.semrock.com
-
Thermo-Fischer—www.thermofisher.com
-
Thorlabs—www.thorlabs.com
-
Tokai Hit—www.tokaihit.com
-
Zeiss—www.zeiss.com/microscopy
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Kole, J., Ahmed, H., Chatterjee, N., Lukinavičius, G., Musters, R. (2022). Live-Cell Imaging: A Balancing Act Between Speed, Sensitivity, and Resolution. In: Nechyporuk-Zloy, V. (eds) Principles of Light Microscopy: From Basic to Advanced . Springer, Cham. https://doi.org/10.1007/978-3-031-04477-9_6
Download citation
DOI: https://doi.org/10.1007/978-3-031-04477-9_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-04476-2
Online ISBN: 978-3-031-04477-9
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)