Abstract
Optical vortices are equally relevant for their fundamental features as beams with topological properties and applications in image processing, telecommunications, optical tweezers, and quantum information. The interaction of light beams with umbilical defects in liquid crystal cells is a natural source of optical vortices. Here we investigate, experimentally and theoretically, the mechanisms of the matter vortices that appear in liquid crystal cells and establish statistical laws that govern them. Based on an adequate stochastic equation, the law for the number of nucleated vortices as a function of anisotropy, bifurcation parameter, and noise level intensity is set. Experimental results show a fair agreement with the theoretical findings.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
A. Sommerfeld, Lectures on theoretical physics, in Optics, vol. IV (Academic Press, New York, 1954)
J. Nye, M. Berry, Dislocations in wave trains. Proc. R. Soc. Lond. A. 336, 6–31 (1974)
L. Allen, M.W. Beijersbergen, R.J.C. Spreeuw, J.P. Woerdman, Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 45, 8185 (1992)
M.S. Soskin, M.V. Vasnetov, in Progress in Optics, vol. 42, ed. by E. Wolf, (Elsevier, 2001), p. 219
L. Allen, S.M. Barnett, M.J. Padgett, Optical Angular Momentum (CRC Press, 2003)
L.M. Pismen, Vortices in Nonlinear Fields (Oxford Science, 1999)
D.G. Grier, A revolution in optical manipulation. Nature 424, 810–816 (2003)
V.G. Shvedov, A.V. Rode, Y.V. Izdebskaya, A.S. Desyatnikov, W. Krolikowski, Y.S. Kivshar, Giant optical manipulation. Phys. Rev. Lett. 105, 118103 (2010)
M. Padgett, R. Bowman, Tweezers with a twist. Nat. Photonics 5, 343–348 (2011)
F. Tamburini, G. Anzolin, G. Umbriaco, A. Bianchini, C. Barbieri, Overcoming the Rayleigh criterion limit with optical vortices. Phys. Rev. Lett. 97, 163903 (2006)
H.H. Arnaut, G.A. Barbosa, Orbital and intrinsic angular momentum of single photons and entangled pairs of photons generated by parametric down-conversion. Phys. Rev. Lett. 85, 286–289 (2000)
K. Murphy, C. Dainty, Comparison of optical vortex detection methods for use with a Shack-Hartmann wavefront sensor. Opt. Express 20, 4988–5002 (2012)
J. Wang, J.-Y. Yang, I.M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, A.E. Willner, Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics 6, 488–496 (2012)
V.Y. Bazhenov, M.V. Vasnetsov, M.S. Soskin, Laser beams with screw dislocations in their wavefronts. JETP Lett. 52, 429–431 (1990)
R.K. Tyson, M. Scipioni, J. Viegas, Generation of an optical vortex with a segmented deformable mirror. Appl. Opt. 47, 6300–6306 (2008)
J. Arlt, K. Dholakia, L. Allen, M.J. Padgett, The production of multiringed Laguerre?Gaussian modes by computer-generated holograms. J. Mod. Opt. 45, 1231–1237 (1998)
M.W. Beijersbergen, L. Allen, H.E.L.O. van der Veen, J.P. Woerdman, Astigmatic laser mode converters and transfer of orbital angular momentum. Opt. Commun. 96, 123–132 (1993)
M. Beresna, M. Gecevicius, P.G. Kazansky, T. Gertus, Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass. Appl. Phys. Lett. 98, 201101 (2011)
D. Voloschenko, O.D. Lavrentovich, Optical vortices generated by dislocations in a cholesteric liquid crystal. Opt. Lett. 25, 317319 (2000)
L. Marrucci, C. Manzo, D. Paparo, Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett.96, 163905 (2006)
E. Brasselet, N. Murazawa, H. Misawa, S. Juodkazis, Optical vortices from liquid crystal droplets. Phys. Rev. Lett. 103, 103903 (2009)
R. Barboza, U. Bortolozzo, G. Assanto, E. Vidal-Henriquez, M.G. Clerc, S. Residori, Vortex induction via anisotropy stabilized light-matter interaction. Phys. Rev. Lett. 109, 143901 (2012)
R. Barboza, U. Bortolozzo, G. Assanto, E. Vidal-Henriquez, M.G. Clerc, S. Residori, Harnessing optical vortex lattices in nematic liquid crystals. Phys. Rev. Lett. 111, 093902 (2013)
R. Barboza, U. Bortolozzo, M.G. Clerc, S. Residori, E. Vidal-Henriquez, Adv. Opt. Photonics 7, 635 (2015)
T. Frisch, S. Rica, P. Coullet, J.M. Gilli, Spiral waves in liquid crystal. Phys. Rev. Lett. 72, 1471–1464 (1994)
M.G. Clerc, E. Vidal-Henriquez, J.D. Davila, M. Kowalczyk, Symmetry breaking of nematic umbilical defects through an amplitude equation. Phys. Rev. E 90, 012507 (2014)
S. Chandrasekhar, Liquid Crystals (Cambridge University, New York, 1977)
L.M. Blinov, Structure and Properties of Liquid Crystals (Springer, New York, 2011)
V. Zambra, M.G. Clerc, R. Barboza, U. Bortolozzo, S. Residori, Umbilical defect dynamics in an inhomogeneous nematic liquid crystal layer. Phys. Rev. E 101, 062704 (2020)
C. Chevallard, M.C. Clerc, Inhomogeneous Fréedericksz transition in nematic liquid crystals. Phys. Rev. E 65, 011708 (2001)
J. Garcia-Ojalvo, J.M. Sancho, Noise in Spatially Extended Systems (Springer, New York, 1999)
D.A. Contreras, M.G. Clerc, Internal noise and system size effects induce nondiffusive kink dynamics. Phys. Rev. E 91, 032922 (2015)
Acknowledgements
The authors thank Enrique Calisto, Michal Kowalczyk, and Michel Ferre for fructified discussions. MGC acknowledges financial support from ANID–Millennium Science Initiative Program–ICN17_012, Millennium Institute for Research in Optics and FONDECYT 1210353 project.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Aguilera, E., Clerc, M.G., Pinto-Ramos, D., Zambra, V. (2022). Thermal Fluctuations Induced Emergence of Umbilical Defects in Nematic Liquid Crystal Cells. In: Brenig, L., Brilliantov, N., Tlidi, M. (eds) Nonequilibrium Thermodynamics and Fluctuation Kinetics. Fundamental Theories of Physics, vol 208. Springer, Cham. https://doi.org/10.1007/978-3-031-04458-8_15
Download citation
DOI: https://doi.org/10.1007/978-3-031-04458-8_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-04457-1
Online ISBN: 978-3-031-04458-8
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)