Skip to main content

Thermal Fluctuations Induced Emergence of Umbilical Defects in Nematic Liquid Crystal Cells

  • Chapter
  • First Online:
Nonequilibrium Thermodynamics and Fluctuation Kinetics

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 208))

  • 726 Accesses

Abstract

Optical vortices are equally relevant for their fundamental features as beams with topological properties and applications in image processing, telecommunications, optical tweezers, and quantum information. The interaction of light beams with umbilical defects in liquid crystal cells is a natural source of optical vortices. Here we investigate, experimentally and theoretically, the mechanisms of the matter vortices that appear in liquid crystal cells and establish statistical laws that govern them. Based on an adequate stochastic equation, the law for the number of nucleated vortices as a function of anisotropy, bifurcation parameter, and noise level intensity is set. Experimental results show a fair agreement with the theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Sommerfeld, Lectures on theoretical physics, in Optics, vol. IV (Academic Press, New York, 1954)

    Google Scholar 

  2. J. Nye, M. Berry, Dislocations in wave trains. Proc. R. Soc. Lond. A. 336, 6–31 (1974)

    Google Scholar 

  3. L. Allen, M.W. Beijersbergen, R.J.C. Spreeuw, J.P. Woerdman, Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 45, 8185 (1992)

    Google Scholar 

  4. M.S. Soskin, M.V. Vasnetov, in Progress in Optics, vol. 42, ed. by E. Wolf, (Elsevier, 2001), p. 219

    Google Scholar 

  5. L. Allen, S.M. Barnett, M.J. Padgett, Optical Angular Momentum (CRC Press, 2003)

    Google Scholar 

  6. L.M. Pismen, Vortices in Nonlinear Fields (Oxford Science, 1999)

    Google Scholar 

  7. D.G. Grier, A revolution in optical manipulation. Nature 424, 810–816 (2003)

    Google Scholar 

  8. V.G. Shvedov, A.V. Rode, Y.V. Izdebskaya, A.S. Desyatnikov, W. Krolikowski, Y.S. Kivshar, Giant optical manipulation. Phys. Rev. Lett. 105, 118103 (2010)

    Google Scholar 

  9. M. Padgett, R. Bowman, Tweezers with a twist. Nat. Photonics 5, 343–348 (2011)

    Google Scholar 

  10. F. Tamburini, G. Anzolin, G. Umbriaco, A. Bianchini, C. Barbieri, Overcoming the Rayleigh criterion limit with optical vortices. Phys. Rev. Lett. 97, 163903 (2006)

    Google Scholar 

  11. H.H. Arnaut, G.A. Barbosa, Orbital and intrinsic angular momentum of single photons and entangled pairs of photons generated by parametric down-conversion. Phys. Rev. Lett. 85, 286–289 (2000)

    Google Scholar 

  12. K. Murphy, C. Dainty, Comparison of optical vortex detection methods for use with a Shack-Hartmann wavefront sensor. Opt. Express 20, 4988–5002 (2012)

    Google Scholar 

  13. J. Wang, J.-Y. Yang, I.M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, A.E. Willner, Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics 6, 488–496 (2012)

    Google Scholar 

  14. V.Y. Bazhenov, M.V. Vasnetsov, M.S. Soskin, Laser beams with screw dislocations in their wavefronts. JETP Lett. 52, 429–431 (1990)

    Google Scholar 

  15. R.K. Tyson, M. Scipioni, J. Viegas, Generation of an optical vortex with a segmented deformable mirror. Appl. Opt. 47, 6300–6306 (2008)

    Google Scholar 

  16. J. Arlt, K. Dholakia, L. Allen, M.J. Padgett, The production of multiringed Laguerre?Gaussian modes by computer-generated holograms. J. Mod. Opt. 45, 1231–1237 (1998)

    Google Scholar 

  17. M.W. Beijersbergen, L. Allen, H.E.L.O. van der Veen, J.P. Woerdman, Astigmatic laser mode converters and transfer of orbital angular momentum. Opt. Commun. 96, 123–132 (1993)

    Google Scholar 

  18. M. Beresna, M. Gecevicius, P.G. Kazansky, T. Gertus, Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass. Appl. Phys. Lett. 98, 201101 (2011)

    Google Scholar 

  19. D. Voloschenko, O.D. Lavrentovich, Optical vortices generated by dislocations in a cholesteric liquid crystal. Opt. Lett. 25, 317319 (2000)

    Google Scholar 

  20. L. Marrucci, C. Manzo, D. Paparo, Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett.96, 163905 (2006)

    Google Scholar 

  21. E. Brasselet, N. Murazawa, H. Misawa, S. Juodkazis, Optical vortices from liquid crystal droplets. Phys. Rev. Lett. 103, 103903 (2009)

    Google Scholar 

  22. R. Barboza, U. Bortolozzo, G. Assanto, E. Vidal-Henriquez, M.G. Clerc, S. Residori, Vortex induction via anisotropy stabilized light-matter interaction. Phys. Rev. Lett. 109, 143901 (2012)

    Google Scholar 

  23. R. Barboza, U. Bortolozzo, G. Assanto, E. Vidal-Henriquez, M.G. Clerc, S. Residori, Harnessing optical vortex lattices in nematic liquid crystals. Phys. Rev. Lett. 111, 093902 (2013)

    Google Scholar 

  24. R. Barboza, U. Bortolozzo, M.G. Clerc, S. Residori, E. Vidal-Henriquez, Adv. Opt. Photonics 7, 635 (2015)

    Google Scholar 

  25. T. Frisch, S. Rica, P. Coullet, J.M. Gilli, Spiral waves in liquid crystal. Phys. Rev. Lett. 72, 1471–1464 (1994)

    Google Scholar 

  26. M.G. Clerc, E. Vidal-Henriquez, J.D. Davila, M. Kowalczyk, Symmetry breaking of nematic umbilical defects through an amplitude equation. Phys. Rev. E 90, 012507 (2014)

    Google Scholar 

  27. S. Chandrasekhar, Liquid Crystals (Cambridge University, New York, 1977)

    Google Scholar 

  28. L.M. Blinov, Structure and Properties of Liquid Crystals (Springer, New York, 2011)

    Google Scholar 

  29. V. Zambra, M.G. Clerc, R. Barboza, U. Bortolozzo, S. Residori, Umbilical defect dynamics in an inhomogeneous nematic liquid crystal layer. Phys. Rev. E 101, 062704 (2020)

    Google Scholar 

  30. C. Chevallard, M.C. Clerc, Inhomogeneous Fréedericksz transition in nematic liquid crystals. Phys. Rev. E 65, 011708 (2001)

    Google Scholar 

  31. J. Garcia-Ojalvo, J.M. Sancho, Noise in Spatially Extended Systems (Springer, New York, 1999)

    Google Scholar 

  32. D.A. Contreras, M.G. Clerc, Internal noise and system size effects induce nondiffusive kink dynamics. Phys. Rev. E 91, 032922 (2015)

    Google Scholar 

Download references

Acknowledgements

The authors thank Enrique Calisto, Michal Kowalczyk, and Michel Ferre for fructified discussions. MGC acknowledges financial support from ANID–Millennium Science Initiative Program–ICN17_012, Millennium Institute for Research in Optics and FONDECYT 1210353 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel G. Clerc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aguilera, E., Clerc, M.G., Pinto-Ramos, D., Zambra, V. (2022). Thermal Fluctuations Induced Emergence of Umbilical Defects in Nematic Liquid Crystal Cells. In: Brenig, L., Brilliantov, N., Tlidi, M. (eds) Nonequilibrium Thermodynamics and Fluctuation Kinetics. Fundamental Theories of Physics, vol 208. Springer, Cham. https://doi.org/10.1007/978-3-031-04458-8_15

Download citation

Publish with us

Policies and ethics