Skip to main content

The Role of Molecular Dynamics Simulations in Multiscale Modeling of Nanocarriers for Cancer Treatment

  • Chapter
  • First Online:
Cancer, Complexity, Computation

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 46))

  • 412 Accesses

Abstract

Nanoparticles hold great potential for improving the drug delivery of anticancer drugs. However, this potential is not fully utilized, evident from the small number of clinically approved nanoparticles. Nanoparticle design is evolving in complexity, yet most experimental methods cannot keep up since they lack the proper resolution for accurate characterization and testing necessary for clinical approval. The computational approach can advance research from the laboratory to clinical applications by offering insights into various phenomena with precision inaccessible to the experimental methods. It can also significantly reduce the time for new design testing and the costs associated with the experimental approach. To fully assess nanoparticles’ efficacy, we need to consider a wide range of length and time scales. These scales include single atom resolution (for precise characterization of their physico-chemical properties), single cell scale (to assess nanoparticle-cell interactions and movement across the tissue), and whole tumour scale to evaluate their influence on the tumour. In this chapter, we present a Multiscale approach utilizing those scales with the focus on the role of the Molecular Dynamics Simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abraham, M.J., Murtola, T., Schulz, R., Pall, S., Smith, J.C., Hess, B., Lindahl, E.: GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. Software X (2015). https://doi.org/10.1016/j.softx.2015.06.001

    Article  Google Scholar 

  2. Adiseshalah, P.P., Hall, J.B., McNeil, S.E.: Nanomaterial standards for efficacy and toxicity assessment. WIREs Nanomed. Nanobiotechnol. (2009). https://doi.org/10.1002/wnan.66

    Article  Google Scholar 

  3. Adnan, A., Sun, C.T., Mahfux, H.: A molecular dynamics simulation study to investigate the effect of filler size on elastic properties of polymer nanocomposites. Compos. Sci. Technol. (2007). https://doi.org/10.1016/j.compscitech.2006.09.015

    Article  Google Scholar 

  4. Ahmad, A., Khan, F., Mishra, R.K., Khan, R.: Precision cancer nanotherapy: evolving role of multifunctional nanoparticles for cancer active targeting. J. Med. Chem. (2019). https://doi.org/10.1021/acs.jmedchem.9b00511

    Article  Google Scholar 

  5. Blazhynska, M.M., Kyrychenko, A., Kalugin, O.N.: Molecular dynamics simulation of the size-dependent morphological stability of cubic shape silver nanoparticles. Mol. Simul. (2018). https://doi.org/10.1080/08927022.2018.1469751

    Article  Google Scholar 

  6. Bouzo, B.L., Calvelo, M., Martin-Pastor, M., Garcia-Fandino, R., de la Fuente, M.: In vitro-In silico modeling approach to rationally designed simple and versatile drug delivery systems. J. Phys. Chem. B (2020). https://doi.org/10.1021/acs.jpcb.0c02731

    Article  Google Scholar 

  7. Brooks, B.R., Brooks, C.L.III., MacKerell, A.D. Jr., Nilsson, L., Petrella, R.J., Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S., Caflisch, A., Caves, L., Cui, Q., Dinner, A.R., Feig, M., Fischer, S., Gao, J., Hodoscek, M., Im, W., Lazaridis, T., Ma, J., Ovchnnikov, V., Paci, E., PAstor, R.W., Post, C.B., Pu, J.Z., Scaefer, M., Tidor, B., Veneable, R.M., Woodcock, H.L., Wu, X., Yang, W., York, D.M., Karplus, M.: CHARMM: the biomolecular simulation program. J. Comput. Chem. (2010). https://doi.org/10.1002/jcc.21287

  8. Cabarcas, S.M., Mathews, L.A., Farrar, W.L.: The cancer stem cell niche-there goes the neighborhood? Int. J. Cancer (2011). https://doi.org/10.1002/ijc.26312

    Article  Google Scholar 

  9. Case, D.A., Aktulga, H.M., Belfon, K., Ben-Shalom, I.Y., Brozell, S.R., Cerutti, D.S., Cheatham, T.E., III., Cruzeiro, V.W.D., Darden, T.A., Duke, R.E., Giambasu, G., Gilson, M.K., Gohlke, H., Goetz, A.W., Harris, R., Izadi, S., Izmailov, S.A., Jin, C., Kasavajhala, K., Kaymak, M.C., King, E., Kovalenko, A., Kurtzman, T., Lee, T.S., LeGrand, S., Li, P., Lin, C., Liu, J., Luchko, T., Luo, R., Machado, M., Man, V., Manathunga, M., Merz, K.M., Miao, Y., Mikhailovskii, O., Monard, G., Nguyen, H., O’Hearn, K.A., Onufriev, A., Pan, F., Pantano, S., Qi, R., Rahnamoun, A., Roe, D.R., Roitberg, A., Sagui, C., Schott-Verdugo, S., Shen, J., Simmerling, C.L., Skrynnikov, N.R., Smith, J., Swails, J., Walker, R.C., Wang, J., Wei, H., Wolf, R.M., Wu, X., Xue, Y., York, D.M., Zhao, S., Kollman, P.A.: Amber 2021. University of California, San Francisco (2021)

    Google Scholar 

  10. Chen, Q., De Schutter, E.: Parallel STEPS: large scale stochastic spatial reaction-diffusion simulation with high performance computers. Front. Neuroinform. (2017). https://doi.org/10.3389/fninf.2017.00013

    Article  Google Scholar 

  11. Chrastina, A., Massey, A.M., Schnitzer, J.E.: Overcoming in vivo barriers to targeted nanodelivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. (2011). https://doi.org/10.1002/wnan.143

    Article  Google Scholar 

  12. Crist, R.M., Grossman, J.H., Patri, A.K., Stern, S.T., Dobrovolskaia, M.A., Adiseshaiah, P.P., Clogston, J.D., McNeil, S.E.: Common pitfalls in nanotechnology: lesson learned from NCI’s nanotechnology characterization laboratory. Integr. Biol. (Camb.) (2013). https://doi.org/10.1039/c2ib20117h

    Article  Google Scholar 

  13. de la Fuente, J.M., Grazu, V.: Nanobiotechnology: Inorganic Nanoparticles vs Organic Nanoparticles. Elsevier, Amsterdam (2012)

    Google Scholar 

  14. Dean, M., Fojo, T., Bates, S.: Tumour stem cells and drug resistance. Nat. Rev. Cancer (2005). https://doi.org/10.1038/nrc1590

    Article  Google Scholar 

  15. Deisboeck, T.S., Want, Z., Mackling, P., Cristini, V.: Multiscale cancer modeling. Annu. Rev. Biomed. Eng. (2011). https://doi.org/10.1146/annurev-bioeng-071910-124729

    Article  Google Scholar 

  16. Fanciullino, R., Ciccolini, J., Milano, G.: Challenges, expectations and limits for nanoparticles-based therapeutics in cancer: a focus on nano-albumin-bound drugs. Crit. Rev. Oncol. Hematol. (2013). https://doi.org/10.1016/j.critrevonc.2013.06.010

    Article  Google Scholar 

  17. Ford Versypt, A.N.: Multiscale modeling in disease. Curr. Opin. Syst. Biol. (2021). https://doi.org/10.1016/j.coisb.2021.05.001

    Article  Google Scholar 

  18. Ghaffarizadeh, A., Friedman, S.H., Macklin, P.: BioFVM: an efficient, parallelized diffusive transport solver for 3-D biological simulations. Bioinformatics (2016). https://doi.org/10.1093/bioinformatics/btv730

    Article  Google Scholar 

  19. Ghaffarizadeh, A., Heiland, R., Friedman, S.H., Mumenthaler, S.M., Macklin, P.: PhysiCell: an open source physics-based cell simulator for 3-D multicellular systems. PLoS Comput. Biol. (2018). https://doi.org/10.1371/journal.pcbi.1005991

    Article  Google Scholar 

  20. Grossman, J.H., Crist, R.M., Clogston, J.D.: Early development challenges for drug products containing nanomaterials. AAPS J. (2016). https://doi.org/10.1208/s12248-016-9980-4

    Article  Google Scholar 

  21. Hanwell, M.D., Curits, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E., Hutchison, G.R.: Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminformatics (2012). https://doi.org/10.1186/1758-2946-4-17

    Article  Google Scholar 

  22. Hauert, S., Berman, S., Nagpal, R., Bhatia, S.N.: A computational framework for identifying design guidelines to increase the penetration of targeted nanoparticles into tumors. Nano Today (2013). https://doi.org/10.1016/j.nantod.2013.11.001

    Article  Google Scholar 

  23. Haume, K., Mason, N.J., Solov’yov, A.V.: Modeling of nanoparticle coatings for medical applications. Eur. Phys. J. D (2016). https://doi.org/10.1140/epjd/e2016-70282-6

    Article  Google Scholar 

  24. Hazarika, Z., Jha, A.N.: Computational analysis of the silver nanoparticle-human serum albumin complex. ACS Omega (2020). https://doi.org/10.1021/acsomega.9b02340

    Article  Google Scholar 

  25. Heikkila, E., Martinez-Sara, H., Gurtovenko, A.A., Vattulainen, I., Akola, J.: Atomistic simulations of anionic Au144(SR)60 nanoparticles interacting with asymmetric model lipid membranes. Biochim. et Biophys. Acta (BBA) - Biomembr. (2014). https://doi.org/10.1016/j.bbamem.2014.07.027

  26. Heikkila, E., Gurtovenko, A.A., Martinez-Seara, H., Hakkinen, H., Vattulainen, I., Akola, J.: Atomistic simulations of functional Au144(SR)60 gold nanoparticles in aqueous environment. J. Phys. Chem. C (2012). https://doi.org/10.1021/jp301094m

    Article  Google Scholar 

  27. Helczynska, K., Kronblad, A., Jogi, A., Nilsson, E., Beckman, S., Landberg, G., Pahlman, S.: Hypoxia promotes a dedifferentiated phenotype in ductal breast carcinoma in situ. Cancer Res.h (2003)

    Google Scholar 

  28. Hepburn, I., Chen, W., Wils, S., De Schutter, E.: STEPS: efficient simulation of stochastic reaction-diffusion models in realistic morphologies. BMC Syst. Biol. (2012). https://doi.org/10.1186/1752-0509-6-36

    Article  Google Scholar 

  29. Hollingsworth, S.A., Dror, R.O.: Molecular dynamics simulation for all. Neuron (2019). https://doi.org/10.1016/j.neuron.2018.08.011

    Article  Google Scholar 

  30. Humphrey, W., Dalke, A. and Schulten, K.: MD - visual molecular dynamics. J. Mol. Graph. (1996). https://doi.org/10.1016/0263-7855(96)00018-5

  31. Khan, I., Saeed, K., Khan, I.: Nanoparticles: properties, applications and toxicities. Arab. J. Chem. (2019). https://doi.org/10.1016/j.arabjc.2017.05.011

    Article  Google Scholar 

  32. Kim, D., Shin, K., Gu Kwon, S., Hyeon, T.: Synthesis and biomedical applications of multifunctional nanoparticles. Adv. Mater. Interfaces (2018). https://doi.org/10.1002/adma.201802309

    Article  Google Scholar 

  33. Kim, K.-S., Han, J.-H., Kim, H.-K., Choi, H.S., Kim, G.R., Song, H., An, H.H., Han, D.K., Park, W., Park, K.-S.: Multifunctional nanoparticles for genetic engineering and bioimaging of natural killer (NK) cell therapeutics. Biomaterials (2019). https://doi.org/10.1016/j.biomaterials.2019.119418

    Article  Google Scholar 

  34. Kovacevic, M., Balaz, I., Marson, D., Laurini, E., Jovic, B.: Mixed-monolayer functionalized gold nanoparticles for cancer treatment: Atomistic molecular dynamics simulations study. Biosystems (2021). https://doi.org/10.1016/j.biosystems.2021.104354

    Article  Google Scholar 

  35. Kurtova, A.V., Xiao, J., Mo, Q., Pazhanisamy, S., Krasnow, R., Lerner, S.P., Chen, F., Roh, T.T., Lay, E., Levy Ho, P., Syson Chan, K.: Blocking PGE2-induced tumour repopulation abrogates bladder cancer chemoresistance. Nature (2015). https://doi.org/10.1038/nature14034

    Article  Google Scholar 

  36. Liu, Y., Qiao, L., Zhang, S., Wan, G., Chen, B., Zhou, P., Zhang, N., Wang, Y.: Dual pH-responsive multifunctional nanoparticles for targeted treatment of breast cancer by combining immunotherapy and chemotherapy. Acta Biomater. (2018). https://doi.org/10.1016/j.actbio.2017.11.010

    Article  Google Scholar 

  37. Marson, D., Guida, F., Sologan, M., Boccardo, S., Pengo, P., Perissinotto, F., Iacuzzi, V., Pellizzoni, E., Polizzi, S., Casalis, L., Pasquato, L., Pacor, S., Tossi, A., Possoco, P.: Mixed Fluorinated/Hydrogenated self-assembled monolayer-protected gold nanoparticles: in silico and in vitro behaviour. Small (2019). https://doi.org/10.1002/smll.201900323

    Article  Google Scholar 

  38. Martinez, L., Birgin, E.G., Martinez, J.M.: PACKMOL: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. (2009). https://doi.org/10.1002/jcc.21224

    Article  Google Scholar 

  39. Maskey, S., Lane, J.M.D., Perahia, D., Grest, G.S.: Structure of rigid polymers confined to nanoparticles: molecular dynamics simulations insight. Langmuir (2016). https://doi.org/10.1021/acs.langmuir.5b04568

    Article  Google Scholar 

  40. Mellor, H.R., Callaghan, R.: Accumulation and distribution of doxorubicin in tumour spheroids: the influence of acidity and expression of P-glycoprotein. Cancer Chemother. Pharmacol. (2021). https://doi.org/10.1007/s00280-011-1598-8

    Article  Google Scholar 

  41. Moayyer, H.A., Naderi, M., Aghazadeh Mohandesi, J., Ramazani, A.: Molecular dynamics simulation of mechanical properties of polystyrene nanoparticles under uniaxial compression test. Comput. Mater. Sci. (2020). https://doi.org/10.1016/j.commatsci.2020.109553

    Article  Google Scholar 

  42. Murugan, C., Rayappan, K., Thangam, R., Bhanumathi, R., Shanti, K., Vivek, R., Thirumurugan, R., Bhattacharyya, A., Sivasubramanian, S., Gunesekeran, P., Kannan, S.: Combinatorial nanocarrier based drug delivery approach for amalgamation of anti-tumor agents in breast cancer cells: an improved nanomedicine strategy. Sci. Rep. (2016). https://doi.org/10.1038/srep34053

    Article  Google Scholar 

  43. Nichols, J.W., Bae, Y.H.: Odyssey of a cancer nanoparticle: from injection site to site of action. Nano Today (2012). https://doi.org/10.1016/j.nantod.2012.10.010

    Article  Google Scholar 

  44. Peppas, N.A.: Receptors: models for binding, trafficking, and signaling. J. Control. Release (1996)

    Google Scholar 

  45. Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, E.: UCSF chimera-a visualization system for exploratory research and analysis. Comput. Chem. (2004). https://doi.org/10.1002/jcc.20084

    Article  Google Scholar 

  46. Phillips, J.C., Hardy, D.J., Maia, J.D.C., Stone, J.E., Ribeiro, J.V., Bernardi, R.C., Buch, R., Fiorin, G., Henin, J., Jiang, W., McGreevy, R., Melo, M.C.R., Radak, B.K., Skeel, R.D., Singharoy, A., Wang, Y., Roux, B., Aksimentiev, A., Luthey-Schulten, Z., Kale, L.V., Schulten, K., Chipot, C., Tajkhorshid, E.: Scalable molecular dynamics on CPU and GPU architectures with NAMD. J. Chem. Phys. (2020). https://doi.org/10.1063/5.0014475

    Article  Google Scholar 

  47. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. (1995). https://doi.org/10.1006/jcph.1995.1039

    Article  MATH  Google Scholar 

  48. Ramezanpour, M., Leung, S.S.W., Delgado-Magnero, K.H., Bashe, B.Y.M., Thewalt, J., Tieleman, D.P.: Computational and experimental approaches for investigating nanoparticle-based drug delivery systems. Biochim. et Biophys. Acta - Biomembr. (2016). https://doi.org/10.1016/j.bbamem.2016.02.028

    Article  Google Scholar 

  49. Rana, S., Bajaj, A., Mout, R., Rotello, V.M.: Monolayer coated fold nanoparticles for delivery applications. Adv. Drug Deliv. Rev. (2012). https://doi.org/10.1016/j.addr.2011.08.006

    Article  Google Scholar 

  50. Ray, P., Alhalhooly, L., Ghosh, A., Choi, Y., Banarjee, S., Mallik, S., Banarjee, S., Quadir, M.: Size-transformable, multifunctional nanoparticles from hyperbranched polymers for environment-specific therapeutic delivery. ACS Biomater. Sci. Eng. (2019). https://doi.org/10.1021/acsbiomaterials.8b01608

    Article  Google Scholar 

  51. Rennick, J.J., Johnston, A.P.R., Parton, R.G.: Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics. Nat. Nanotechnol. (2021). https://doi.org/10.1038/s41565-021-00858-8

    Article  Google Scholar 

  52. Salerno, K.M., Ismail, A.E., Lane, J.M.D., Grest, G.S.: Coating thickness and coverage effects on the forces between silica nanoparticles in water. J. Chem. Phys. (2014). https://doi.org/10.1063/1.4874638

    Article  Google Scholar 

  53. Sau, aA groundbreaking approach for reprogramming malfunctioned tumor environment. J. Control. Release (2018). https://doi.org/10.1016/j.jconrel.2018.01.028

  54. Schlick, T.: Molecular Modeling and Simulation: An Interdisciplinary Guide. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  55. Sridhar, D.B., Gupta, R., Rai.B.: Effect of surface coverage and chemistry on self-assembly of monolayer protected gold nanoparticles: a molecular dynamics simulation study. Phys. Chem. Chem. Phys. (2018). https://doi.org/10.1039/C8CP04044C

  56. Stallard, Morrison, J.G., George, W.D., Kaye, S.B.: Distribution of doxorubicin to normal breast and tumour tissue in patients undergoing mastectomy. Cancer Chemother. Pharmacol. (1990). https://doi.org/10.1007/bf00684887

  57. Stillman, N.R., Kovacevic, M., Balaz, I., Hauert, S.: In silico modelling of cancer nanomedicine, across scales and transport barriers. NPJ Comput. Mater. (2020). https://doi.org/10.1038/s41524-020-00366-8

    Article  Google Scholar 

  58. Stillman, N., Balaz, I., Tsompanas, M.-A., Kovacevic, M., Azimi, S., Lafond, S., Adamtzky, A., Hauert, S.: Evolutionary computational platform for the automatic discovery of nanocarriers for cancer treatment. NPJ Comput. Mater. (2021). https://doi.org/10.1038/s41524-021-00614-5

    Article  Google Scholar 

  59. Stipa, P., Marano, S., Galeazzi, R., Minnelli, C., Mobbil, G., Ludadio, E.: Prediction of drug-carrier interactions of PLA and PLGA drug-loaded nanoparticles by molecular dynamics simulations. Eur. Polymer J. (2021). https://doi.org/10.1016/j.eurpolymj.2021.110292

    Article  Google Scholar 

  60. Swierczewska, M., Crist, R.M., McNeil, S.E.: Evaluating nanomedicines: obstacles and advancements. Methods in Molecular Biology (Clifton, N.J.) (2018). https://doi.org/10.1007/978-1-4939-7352-1_1

  61. Torrice, M.: Does nanomedicine have a delivery problem? ACS Cent. Sci. (2016). https://doi.org/10.1021/acscentsci.6b00190

    Article  Google Scholar 

  62. van der Meel, R., Sulheim, E., Shi, Y., Kiessling, F., Mulder, W.J.M., Lammers, T.: Smart cancer nanomedicine. Nat. Nanotechnol. (2019). https://doi.org/10.1038/s41565-019-0567-y

    Article  Google Scholar 

  63. Van Lehn, R.C., Alexander-Katz, A.: Structure of mixed-monolayer-protected nanoparticles in aqueous salt solution from atomistic molecular dynamics simulations. J. Phys. Chem. (2013). https://doi.org/10.1021/jp406035e

    Article  Google Scholar 

  64. Van Lehn, R.C., Alexander-Katz, A.: Structure of mixed-monolayer-protected nanoparticles in aqueous salt solution from atomistic molecular dynamics simulations. J. Phys. Chem. C (2013). https://doi.org/10.1021/jp406035e

    Article  Google Scholar 

  65. Vanquelef, E., Simon, S., Marquant, G., Garcia, E., Klimerak, G., Delepine, J.C., Cieplak, P., Dupradeau, F.-Y.: R.E.D. Server: a web service for deriving RESP and ESP charges and building force field libraries for new molecules and molecular fragments. Nucl. Acids Res. (2011). https://doi.org/10.1093/nar/gkr288

  66. Vaupel, P., Harrison, L.: Tumor hypoxia: causative factors, compensatory mechanisms, and cellular response. Oncologist (2004). https://doi.org/10.1634/theoncologist.9-90005-4

    Article  Google Scholar 

  67. Vinogradov, S., Wei, X.: Cancer stem cells and drug resistance: the potential of nanomedicine. Nanomedicine (2012). https://doi.org/10.2217/nnm.12.22

    Article  Google Scholar 

  68. Wang, J., Wolf, R.M., Caldwell, J.W., Kollman, P.A., Case, D.A.: Development and testing of a general amber force field. Comput. Chem. (2004). https://doi.org/10.1002/jcc.20035

    Article  Google Scholar 

  69. Wei, A., Mehtala, J.G., Patri, A.K.: Challenges and opportunities in the advancement of nanomedicines. J. Control. Release (2012). https://doi.org/10.1016/j.jconrel.2012.10.007

    Article  Google Scholar 

  70. Wils, S., De Schutter, E.: Reaction-diffusion in complex 3D geometries: mesh construction and stochastic simulation with STEPS. BMC Neurosci. (2008). https://doi.org/10.1186/1471-2202-9-S1-P85

    Article  Google Scholar 

  71. Xu, S., Nie, Z., Seo, M., Lewis, P., Kumacheva, E., Stone, H.A., Garstecki, P., Weibel, D.B., Gitlin, I., Whitesides, G.M.: Generation of monodisperse particles by using microfluidics: control over size, shape, and composition. Angew. Chem. Int. Ed. Engl. (2005). https://doi.org/10.1002/anie.200462226

    Article  Google Scholar 

  72. Yamashita, F., Hashida, M.: Pharmacokinetic considerations for targeted drug delivery. Adv. Drug Deliv. Rev. (2013). https://doi.org/10.1016/j.addr.2012.11.006

    Article  Google Scholar 

  73. Yang, S., Chen, L., Zhou, X., Sun, P., Fu, L., You, Y., Xu, M., You, Z.: Tumor-targeted biodegradable multifunctional nanoparticles for cancer theranostics. Chem. Eng. J. (2019). https://doi.org/10.1016/j.cej.2019.122171

    Article  Google Scholar 

  74. Yetisgin, A.A., Cetinel, S., Zuvin, M., Kosar, A., Kutlu, O.: Therapeutic nanoparticles and their targeted delivery applicatioins. Molecules (2020). https://doi.org/10.3390/molecules25092193

    Article  Google Scholar 

  75. Zamboni, W.C., Torchilin, V., Patri, A.K., Hrkach, J., Stern, S., Lee, R., Nel, A., Panaro, N.J., Grodzinski, P.: Best practices in cancer nanotechnology: perspective from NCI nanotechnology alliance. Clin. Cancer Res. (2012). https://doi.org/10.1158/1078-0432.CCR-11-2938

    Article  Google Scholar 

  76. Zhao, M., van Straten, D., Broekman, M.L.D., Preatm, V., Schiffelers, R.M.: Nanocarrier-based drug combination therapy for glioblastoma. Theranostics (2020). https://doi.org/10.7150/thno.38147

    Article  Google Scholar 

Download references

Acknowledgements

I would like to thank my supervisor dr. Igor Balaz for his consistent support and guidance during the writing of this chapter. This work was supported by the European union’s Horizon 2020 research and innovation programme under grant agreement No 800983.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Kovacevic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kovacevic, M., Balaz, I. (2022). The Role of Molecular Dynamics Simulations in Multiscale Modeling of Nanocarriers for Cancer Treatment. In: Balaz, I., Adamatzky, A. (eds) Cancer, Complexity, Computation. Emergence, Complexity and Computation, vol 46. Springer, Cham. https://doi.org/10.1007/978-3-031-04379-6_9

Download citation

Publish with us

Policies and ethics