Skip to main content

Drawbacks of Bench to Bed Translation of Nanomedicines for Cancer Treatment

  • Chapter
  • First Online:
Cancer, Complexity, Computation

Abstract

Resistant metastatic cancer is at the moment an incurable disease and an unmet clinical need. It is one of the most lethal diseases and is causing thousands of deaths annually throughout the world.  In this sense, nanomedicine-based drug delivery systems have brought a new hope for cancer patients in terms of reduced adverse effects and overcome resistance of the chemotherapeutical drugs. Even though the potential of nanomedicines, its clinical translation still suboptimal. A new focus and new paradigm of this prospective scientific field is thus urgently needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arnold, M., Rutherford, M.J., Bardot, A., Ferlay, J., Andersson, T.M.L., Myklebust, T.Ã., Tervonen, H., Thursfield, V., Ransom, D., Shack, L., Woods, R.R., Turner, D., Leonfellner, S., Ryan, S., Saint-Jacques, N., De, P., McClure, C., Ramanakumar, A.V., Stuart-Panko, H., Engholm, G., Walsh, P.M., Jackson, C., Vernon, S., Morgan, E., Gavin, A., Morrison, D.S., Huws, D.W., Porter, G., Butler, J., Bryant, H., Currow, D.C., Hiom, S., Parkin, D.M., Sasieni, P., Lambert, P.C., Møller, B., Soerjomataram, I., Bray, F.: Progress in cancer survival, mortality, and incidence in seven high-income countries 1995–2014 (ICBP SURVMARK-2): a population-based study. Lancet Oncol. 20(11), 1493–1505 (2011) 2019. https://doi.org/10.1016/S1470-2045(19)30456-5

  2. Pilleron, S., AUID-ORCID: https:/., Sotoâ-Perezâ-deâ-Celis, E., Vignat, J., Ferlay, J., Soerjomataram, I., Bray, F.A., Sarfati, D.A.: Estimated global cancer incidence in the oldest adults in 2018 and projections to 2050. Int. J. Cancer 148(3), 601–608 (2003). 01 Feb 2021. Epub 17 Aug 2020. https://doi.org/10.1002/ijc.33232-8

  3. Ulldemolins, A., Seras-Franzoso, J., Andrade, F., Rafael, D., Abasolo, I., Gener, P., Schwartz Jr, S.: Perspectives of nano-carrier drug delivery systems to overcome cancer drug resistance in the clinics. Cancer Drug Resist 3 (2020) (Online)

    Google Scholar 

  4. Xue, X.F., Liang, X.J.: Overcoming drug efflux-based multidrug resistance in cancer with nanotechnology. Chin. J. Cancer 31(2), 100–109 (2002). Feb 2012. https://doi.org/10.5732/cjc.0111.0326

  5. Shi, J., Kantoff, P.W., Wooster, R., Farokhzad, O.C.: Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer 17(1), 20–37 (2001). Jan 2017. Epub 11 Nov 2016. https://doi.org/10.1038/nrc.2016.108

  6. Salvioni, L., Rizzuto, M.A., Bertolini, J.A., Pandolfi, L., Colombo, M., Prosperi, D.A.: (Basel)—Thirty years of cancer nanomedicine: success, frustration, and hope. Cancers (Basel) 11(12) (2019). https://doi.org/10.3390/cancers11121855

  7. van der Meel, R., Sulheim, E., Shi, Y., Kiessling, F., Mulder, W.J., Lammers, T.: Smart cancer nanomedicine: strategic directions to improve translation and exploitation. Nat. Nanotechnol. 14(11), 1007–1017 (2011). Nov 2019. Epub 06 Nov 2019. https://doi.org/10.1038/s41565-019-0567-y-17

  8. Lee, G., Hall, R.R., III, Ahmed, A.U.: Cancer stem cells: cellular plasticity, niche, and its clinical relevance. J. Stem Cell Res. Ther. 6(10) (2010). Epub 2016 Oct 26–7633. https://doi.org/10.4172/2157-76331000363

  9. Lengauer, C., Kinzler, K.W., Vogelstein, B.: Genetic instabilities in human cancers. Nature 396, 643–649 (1998)

    Article  Google Scholar 

  10. Gener, P., Rafael, D.F., Fernandez, Y., Ortega, J.S., Arango, D., Abasolo, I., Videira, M., Schwartz, S., Jr.: Cancer stem cells and personalized cancer nanomedicine. Nanomedicine (Lond) 11, 307–320 (2016)

    Article  Google Scholar 

  11. Shackleton, M., Quintana, E., Fearon, E.R., Morrison, S.J.: Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell 138, 822–829 (2009)

    Article  Google Scholar 

  12. Hermann, P.C., Bhaskar, S., FAU., Cioffi, M., Cioffi, M.F., Heeschen, C. Cancer stem cells in solid tumors. Semin. Cancer Biol. 20(2), 77–84 (2002). Epub 3 Apr 2010. https://doi.org/10.1016/j.semcancer.2010.03.004

  13. Sell, S.: Stem cell origin of cancer and differentiation therapy. Crit. Rev. Oncol. Hematol. 51(1), 1–28 (2001). Jul 2004. https://doi.org/10.1016/j.critrevonc.2004.04.007-28

  14. Shackleton, M.: Normal stem cells and cancer stem cells: similar and different. Semin. Cancer Biol. 20, 85–92 (2010)

    Article  Google Scholar 

  15. Olmeda, F., Ben, A.M.: Clonal pattern dynamics in tumor: the concept of cancer stem cells. Sci. Rep. 9(1), 15607 (2001). 30 Oct 2019. https://doi.org/10.1038/s41598-019-51575-1

  16. Plaks, V., Kong, N., Werb, Z.: The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell 16(3), 225–38 (2003). 5 Mar 2015. https://doi.org/10.1016/j.stem.2015 02.015-38

  17. Gener P, Gonzalez Callejo P, Seras-Franzoso J, Andrade F, Rafael D, Abasolo I, Schwartz S Jr. The potential of nanomedicine to alter cancer stem cell dynamics: the impact of extracellular vesicles. Nanomedicine (Lond). 2020 Dec;15(28):2785–2800. https://doi.org/10.2217/nnm-2020-0099. Epub 2020 Nov 16. PMID: 33191837

  18. Gener, P., Seras-Franzoso, J., Gonzales Callego, P., Andrade, F., Rafael, D., et al.: Dynamism, Sensitivity, and Consequences of Mesenchymal and Stem-Like Phenotype of Cancer Cells. Stem Cells Int. (2018). (in press)

    Google Scholar 

  19. Shibue, T., Weinberg, R.A.: EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat. Rev. Clin. Oncol. 14(10):611–629 (2010). Oct 2017. Epub 11 Apr 2017. https://doi.org/10.1038/nrclinonc.2017.44

  20. Wang, M., Zhao, J., Zhang, L., Wei, F., Lian, Y., Wu, Y., Gong, Z., Zhang, S., Zhou, J., Cao, K., Li, X., Xiong, W., Li, G., Zeng, Z., Guo, C.: Role of tumor microenvironment in tumorigenesis. J. Cancer 8(5), 761–773 (2005). 25 Feb 2017. https://doi.org/10.7150/jca.17648

  21. Wicha, M.S., Liu, S., Dontu, G.: Cancer stem cells: an old idea–a paradigm shift. Cancer Res. 66, 1883–1890 (2006)

    Article  Google Scholar 

  22. Gener, P., Rafael, D., Seras-Franzoso, J., Perez, A., Pindado, L.A., Casas, G., Arango, D., Fernandez, Y., Diaz-Riascos, Z.V., Abasolo, I., Schwartz, S Jr. (Basel).: Pivotal role of AKT2 during dynamic phenotypic change of breast cancer stem cells. Cancers (Basel) 11(8) 2019 Jul 26. https://doi.org/10.3390/cancers11081058

  23. Gupta, P.B., Fillmore, C.M., Jiang, G., Shapira, S.D., Tao, K., Kuperwasser, C., Lander, E.S.: Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 146, 633–644 (2011)

    Article  Google Scholar 

  24. Cabrera, M.C., FAU., Hollingsworth, R., Hollingsworth, R.E., FAU., Hurt, E., Hurt, E.M.: Cancer stem cell plasticity and tumor hierarchy. World J. Stem Cells 7(1), 27–36 (2001). Epub 26 Jan 2015. https://doi.org/10.4252/wjsc.v7.i1.27-36

  25. Eun, K., Ham, S.W., Kim, H.: Cancer stem cell heterogeneity: origin and new perspectives on CSC targeting. Bmb Rep. 50(3), 117–125–125 (2003). Mar 2017

    Google Scholar 

  26. Sun, Z.A., Wang, L., Dong, L., Wang, X.: Emerging role of exosome signalling in maintaining cancer stem cell dynamic equilibrium. J. Cell Mol. Med. 25 May 2018. https://doi.org/10.1111/jcmm.13676.J

  27. Hernandez-Oller, L.A., Seras-Franzoso, J., Andrade, F., Rafael, D.A., Abasolo, I.A., Gener, P.A., Schwartz, S., AUID-ORCID: https: Extracellular vesicles as drug delivery systems in cancer. Pharmaceutics 12(12) (2012). 26 Nov 2020. https://doi.org/10.3390/pharmaceutics12121146

  28. Jo, D.H., Kim, J.H., Lee, T.G., Kim, J.H.: Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases. Nanomedicine 7, 1603–1611 (2015)

    Google Scholar 

  29. Meng, H., Leong, W., Leong, K.W., Chen, C., Zhao, Y.: Walking the line: the fate of nanomaterials at biological barriers. Biomaterials 174, 41–53 (2018). Epub 05 May 2018. https://doi.org/10.1016/jbiomaterials.2018.04.056

  30. Rodriguez, P.L., Harada, T., Christian, D.A., Pantano, D.A., Tsai, R.K., Discher, D.E.: Minimal “Self†peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science 339(6122), 971–975. 22 Feb 2013. https://doi.org/10.1126/science 1229568

  31. Mishra, P., Nayak, B., Dey, R.K.: PEGylation in anti-cancer therapy: an overview. AJPS 11, 337–348 (2020)

    Google Scholar 

  32. Libutti, S.K., Tamarkin, L., Nilubol, N.: Targeting the invincible barrier for drug delivery in solid cancers: interstitial fluid pressure. Oncotarget 9(87), 35723-5 (1987). 6 Nov 2018. https://doi.org/10.18632/oncotarget.26267

  33. Miao, L., Newby, J.M., Lin, C., Zhang, L., Xu, F., Kim, W.Y., Forest, M., Lai, S.K., Milowsky, M.I., Wobker, S.E., Huang, L.: The binding site barrier elicited by tumor-associated fibroblasts interferes disposition of nanoparticles in stroma-vessel type tumors. ACS Nano 10(10), 9243–9258 (2010). 25 Oct 2016. Epub 28 Sep 2016. https://doi.org/10.1021/acsnano.6b02776.

  34. Attia, M., Anton, N., Wallyn, J., Omran, Z., Vandamme, T.F.: An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J. Pharm. Pharmacol. 1185–1198 (2019)

    Google Scholar 

  35. Murayama, T.F., Gotoh, N.A. Patient-Derived Xenograft Models of Breast Cancer and Their Application. Cells 8(6) (2006). 20 Jun 2019. https://doi.org/10.3390/cells8060621

  36. Dobrovolskaia, M.A., Shurin, M., Shvedova, A.A. Current understanding of interactions between nanoparticles and the immune system. Toxicol. Appl. Pharmacol. 299, 78–89 15 May 2016. Epub 29 Dec 2015. https://doi.org/10.1016/j.taap.2015.12.022

  37. Gazdar, A.F., Hirsch, F.R., Minna, J.D.: From Mice to Men and back – an assessment of preclinical model systems for the study of lung cancers. J. Thorac. Oncol. 11(3), 287–99 (2003). Mar 2016. Epub 24 Dec 2015. https://doi.org/10.1016/j.jtho.2015.10.009

  38. Villaverde, G., Baeza, A.A.: Targeting strategies for improving the efficacy of nanomedicine in oncology. Beilstein J. Nanotechnol. 10, 168–181 14 Jan 2019. https://doi.org/10.3762/bjnano.10.16-Beilstein

  39. Miele, E., Spinelli, G.P., Miele, E., Tomao, F., Tomao, S.: Albumin-bound formulation of paclitaxel (Abraxane® ABI-007) in the treatment of breast cancer. Int. J. Nanomedicine 4, 99–105 2009. Epub 20 Apr 2009

    Google Scholar 

  40. Xu, X., Ho, W., Zhang, X., Bertrand, N., Farokhzad, O.: Cancer Nanomedicine: from targeted delivery to combination therapy. Trends Mol. Med. 21(4), 223–32 (2004). Apr 2015 Epub 2 Feb 2015. https://doi.org/10.1016/j.molmed.2015.01.001.32

  41. Ventola, C.L.: Progress in nanomedicine: approved and investigational nanodrugs. Pharm. Ther. 42(12), 742–755 (2012). 2017 Dec

    Google Scholar 

  42. Patra, J.K., AUID, Das, G., Fraceto, L.F., Campos, E.V.R., Rodriguez-Torres, M., del, P.A., Acosta-Torres, L.S., AUID-ORCID, Diaz-Torres, L.A., AUID-ORCID, Grillo, R., Swamy, M.K., Sharma, S., Habtemariam, S., Shin, H.S.: Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnology 16 19 Sep 2018. 10 1186/s12951-018-0392-8

    Google Scholar 

  43. Anchordoquy, T.J., Barenholz, Y., Boraschi, D., Chorny, M., Decuzzi, P., Dobrovolskaia, M.A., Farhangrazi, Z.S., Farrell, D., Gabizon, A., Ghandehari, H., Godin, B., La-Beck, N.M., Ljubimova, J., Moghimi, S.M., Pagliaro, L., Park, J.H., Peer, D., Ruoslahti, E., Serkova, N.J., Simberg, D.: Mechanisms and barriers in cancer nanomedicine: addressing challenges, looking for solutions. ACS Nano. 11(1), 12–18 (2001). 24 Jan 2017. Epub 09 Jan 2017. 10 1021/acsnano 6b08244.

    Google Scholar 

  44. Cicha, I., Chauvierre, C., Texier, I., Cabella, C., Metselaar, J.M., Szebeni, J., Dézsi, L., Alexiou, C., Rouzet, F., Storm, G., Stroes, E., Bruce, D., MacRitchie, N., Maffia, P., Letourneur, D.: From design to the clinic: practical guidelines for translating cardiovascular nanomedicine. Cardiovasc. Res. 114(13), 1714–27 (2013). 01 Nov 2018. Epub 27 Aug 2018. https://doi.org/10.1093/cvr/cvy219-27

  45. Darmont, F., Rousseau, B.: Translation of nanomedicines from lab to industrial scale synthesis: the case of squalene-adenosine nanoparticles. J. Control. Release 307, 302–314 (2019)

    Article  Google Scholar 

  46. Metselaar, J.M., Lammers, T.: Challenges in nanomedicine clinical translation. Drug Deliv. Transl. Res. 10(3), 721–725 (2003) (2020). Epub 12 Mar 2020. https://doi.org/10.1007/s13346-020-00740-5

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Gener .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gener, P., Ulldemolins, A., Schwartz, S. (2022). Drawbacks of Bench to Bed Translation of Nanomedicines for Cancer Treatment. In: Balaz, I., Adamatzky, A. (eds) Cancer, Complexity, Computation. Emergence, Complexity and Computation, vol 46. Springer, Cham. https://doi.org/10.1007/978-3-031-04379-6_11

Download citation

Publish with us

Policies and ethics